Machines

It is unworthy of excellent people to lose hours like slaves in the labor of
calculation which could safely be relegated to anyone else if machines were used.
Gottfried Wilhelm von Leibniz, 1685

The ®rst ®ve chapters focused on ways to use language to describe procedures.
Although ®nding ways to describe procedures succinctly and precisely would
be worthwhile even if we did not have machines to carry out those procedures,
the tremendous practical value we gain from being able to describe procedures
comes from the ability of computers to carry out those procedures astoundingly
quickly, reliably, and inexpensively. As a very rough approximation, a typical
laptop gives an individual computing power comparable to having every living

human on the planet working for you without ever making a mistake or needing
a break.

This chapter introduces computing machines. Computers are different from
other machines in two key ways:

1. Whereas other machines amplify or extend our physical abilities, comput-
ers amplify and extend our mental abilities.

2. Whereas other machines are designed for a few speci®c tasks, computers
can be programmed to perform many tasks. The simple computer model

we present in this chapter is suf®cient to perform all possible computa-
tions.

The next section gives a brief history of computing machines, from prehistoric
calculating aids to the design of the ®rst universal computers. Section 6.2 ex-
plains how machines can implement logic. Section 6.3 introduces a simple ab-
stract model of a computing machine that is powerful enough to carry out any
algorithm.

We provide only a very shallow introduction to how machines can implement
computations. Our primary goal is not to convey the details of how to design
and build an ef®cient computing machine (although that is certainly a worthy
goal that is often pursued in later computing courses), but to gain suf®cient un-
derstanding of the properties nearly all conceivable computing machines share
to be able to predict properties about the costs involved in carrying out a par-
ticular procedure. The following chapters use this to reason about the costs of
various procedures. In Chapter 12, we use it to reason about the range of prob-
lems that can and cannot be solved by any mechanical computing machine.

Suan Pan

Pascaline
David Monniaux

106 6.1. History of Computing Machines

6.1 History of Computing Machines

The goal of early machines was to carry out some physical process with less ef-
fortthan would be required by a human. These machines took physical things as
inputs, performed physical actions on those things, and produced some phys-
ical output. For instance, a cotton gin takes as input raw cotton, mechanically
separates the cotton seed and lint, and produces the separated products as out-
put.

The ®rst big leap toward computing machines was the development of machines
whose purpose is abstract rather than physical. Instead of producing physical
things, these machines used physical things to representinformation. The out-
put of the machine is valuable because it can be interpreted as information, not
for its direct physical effect.

Our ®rst example is not a machine, but using ®ngers to count. The base ten
number system used by most human cultures re ects using our ten ®ngers for
counting. 1 Successful shepherds needed to ®nd ways to count higher than ten.
Shepherds used stones to represent numbers, making the cognitive leap of using
a physical stone to represent some quantity of sheep. A shepherd would count
sheep by holding stones in his hand that represent the number of sheep.

More complex societies required more counting and more advanced calculat-
ing. The Inca civilization in Peru used knots in collections of strings known as
khipu to keep track of thousands of items for a hierarchical system of taxation.
Many cultures developed forms of abaci, including the ancient Mesopotamians
and Romans. An abacus performs calculations by moving beads on rods. The
Chinese suan pan (®calculating plate®) is an abacus with a beam subdividing
the rods, typically with two beads above the bar (each representing 5), and ®ve
beads below the beam (each representing 1). An operator can perform addition,
subtraction, multiplication, and division by following mechanical processes us-
ing an abacus.

All of these machines require humans to move parts to perform calculations.
As machine technology improved, automatic calculating machines were built
where the operator only needed to set up the inputs and then turn a crank or
use some external power source to perform the calculation. The ®rst automatic
calculating machine to be widely demonstrated was the Pascaline, built by then
nineteen-year old French mathematician Blaise Pascal (also responsible for Pas-
cal's triangle from Exploration 5.1) to replace the tedious calculations he had to
do to manage his father's accounts. The Pascaline had ®ve wheels, each repre-
senting one digit of a number, linked by gears to perform addition with carries.
Gottfried Wilhelm von Leibniz built the ®rst machine capable of performing all
four basic arithmetic operations (addition, subtraction, multiplication, and di-
vision) fully mechanically in 1694.

Over the following centuries, more sophisticated mechanical calculating ma-
chines were developed but these machines could still only perform one opera-
tion at a time. Performing a series of calculations was a tedious and error-prone
process in which a human operator had to set up the machine for each arith-

INot all human cultures use base ten number systems. For example, many cultures including the
Maya and Basque adopted base twenty systems counting both ®ngers and toes. This was natural in
warm areas, where typical footwear left the toes uncovered.

Chapter 6. Machines 107

metic operation, record the result, and reset the machine for the next calcula-
tion.

The big breakthrough was the conceptual leap of programmability. A machine
is programmable if its inputs not only control the values it operates on, but the
operations it performs.

The ®rst programmable computing machine was envisioned (but never success-
fully built) in the 1830s by Charles Babbage. Babbage was born in London in
1791 and studied mathematics at Cambridge. In the 1800s, calculations were
done by looking up values in large books of mathematical and astronomical ta-

bles. These tables were computed by hand, and often contained errors. The

calculations were especially important for astronomical navigation, and when Charles Babbage
the values were incorrect a ship would miscalculate its position at sea (some-
times with tragic consequences). We got nothing for

our £17,000 but Mr.
Babbage sought to develop a machine to mechanize the calculations to compute Babbage's
these tables. Starting in 1822, he designed a steam-powered machine known grumblings. We
as the Difference Engine to compute polynomials needed for astronomical cal- flzgugdcf;\:gf‘tsé;%\f
culations using Newton's method of successive differences (a generalization of our money.
Heron's method from Exploration 4.1). The Difference Engine was never fully Richard Sheepshanks,

.. . . Letter to the Board of
completed. but led Babbage to envision a more general calculating machine. Visitors of the

Greenwich Royal
This new machine, the Analytical Engine, designed between 1833 and 1844, was Observatory, 1854

the ®rst general-purpose computer envisioned. It was designed so that it could
be programmed to perform any calculation. One breakthrough in Babbage's de-
sign was to feed the machine's outputs back into its inputs. This meant the en-
gine could perform calculations with an arbitrary number of steps by cycling
outputs back through the machine.

The Analytical Engine was programmed using punch cards, based on the cards
that were used by Jacquard looms. Each card could describe an instruction such
as loading a number into a variable in the store, moving values, performing
arithmetic operations on the values in the store, and, most interestingly, jump-
ing forward and backwards in the instruction cards. The Analytical Engine

supported conditional jumps where the jump would be taken depending on the Analytical Engine
state of a lever in the machine (this is essentially a simple form of the if expres- sooncer o
sion).

In 1842, Babbage visited Italy and described the Analytical Engine to Luigi Menabrea,
an ltalian engineer, military of®cer, and mathematician who would later be-
come Prime Minister of Italy. Menabrea published a description of Babbage's
lectures on the Analytical Engine in French. Ada Augusta Byron King (also known

as Ada, Countess of Lovelace) translated the article into English.

In addition to the translation, Ada added a series of notes to the article. The
notes included a program to compute Bernoulli numbers, the ®rst detailed pro-
gram for the Analytical Engine. Ada was the ®rst to realize the importance and
interestin creating the programs themselves, and envisioned how programs could
be used to do much more than just calculate mathematical functions. This was
the ®rst computer program ever described, and Ada is recognized as the ®rst
computer programmer.

. , . e . . Ada Augusta Byron
Despite Babbage's design, and Adas vision, the Analytical Engine was never com- King

Boolean logic

George Boole

(often denoted as 1), and false (often denoted as 0). The Boolean datatype in
Scheme is based on Boolean logic. Boolean logic is named for George Boole, a
self-taught British mathematician who published Aninvestigation into the Laws
of Thought, on Which are founded the Mathematical Theories of Logic and Proba-
bilities in 1854. Before Boole's work, logic focused on natural language discourse.
Boole made logic a formal language to which the tools of mathematics could be
applied.

We illustrate how logical functions can be implemented mechanically by de-
scribing some logical machines. Modern computers use electrons to compute
because they are small (more than a billion billion billion (103 electrons ®t
within the volume of a grain of sand), fast (approaching the speed of light), and
cheap (more than a billion billion (10?%) electrons come out of a power outlet for
less than a cent). They are also invisible and behave in somewhat mysterious
ways, however, so we will instead consider how to compute with wine (or your
favorite colored liquid). The basic notions of mechanical computation dont de-
pend on the medium we use to compute, only on our ability to use it to represent
values and to perform simple logical operations.

6.2.1 Implementing Logic

To implement logic using a machine, we need physical ways of representing the
two possible values. We use a full bottle of wine to represent true and an empty

table needs two entries, showing the output value for each possible input. When
there are two inputs, the table needs four entries, showing the output value for
all possible combinations of the input values. The truth table for the logical
function is:

A B | (and AB)
false false false
true false false
false true false
true true true

We design a machine that implements the function described by the truth ta-
ble: if both inputs are true (represented by full bottles of wine in our machine),

the output should be true; if either input is false, the output should be false (an

empty bottle). One way to do this is shown in Figure 6.1. Both inputs pour into
a basin. The output nozzle is placed at a height corresponding to one bottle of
wine in the collection basin, so the output bottle will ®Il (representing
if both inputs are true.

The design in Figure 6.1 would probably not work very well in practice. Some
of the wine is likely to spill, so even when both inputs are true the output might
not be a full bottle of wine. What should a ;31 full bottle of wine represent? What
about a bottle that is half full?

The solution is the digital abstraction . Although there are many different quan-
tities of wine that could be in a bottle, regardless of the actual quantity the value

2Scheme provides a special form and that performs the same function as the logical
Itis a special form, though, since the second input expression is not evaluated unless the ®rst input
expression evaluates to true.

and

true), only

and function.

truth table

digital abstraction

[?] Our de®nition of (not A) as (nand A A) assumes there is a way
to produce two copies of a given input. Design a component for our wine ma-
chine that can do this. It should take one input, and produce two outputs, both
with the same value as the input. (Hint: when the inputis true, we need to pro-
duce two full bottles as outputs, so there must be a source similarly to the not
component.)

Exercise 6.5. [?] The digital abstraction works ®ne as long as actual values stay
close to the value they represent. But, if we continue to compute with the out-
puts of functions, the actual values will get increasingly fuzzy. For example, if
the inputs to the and3 function in Figure 6.3 are initially all % full bottles (which

should be interpreted as true), the basin for the ®rst and function will ®llto 11,
so only % bottle will be output from the ®rst and. When combined with the third

input, the second basin will contain 1% bottles, soonly will spill into the output
bottle. Thus, the output will represent false, even though all three inputs repre-
sent true. The solution to this problemis to use an ampli®er to restore values to
their full representations. Design a wine machine ampli®er that takes one input

[?] Isit possible to compute r4 with fewer logical functions?

Exercise 6.7. Show how to compute the result bits for binary multiplication of
two 2-bit inputs using only logical functions.

Exercise 6.8. [?] Show how to compute the result bits for binary multiplication
of two inputs of any length using only logical functions.

6.3 Modeling Computing

By composing the logic functions, we could build a wine computer to perform
any Boolean function. And, we can perform any discrete arithmetic function
using only Boolean functions. For a useful computer, though, we need pro-
grammability. We would like to be able to make the inputs to the machine de-
scribe the logical functions that it should perform, rather than having to build
a new machine for each desired function. We could, in theory, construct such a
machine using wine, but it would be awfully complicated. Instead, we consider
programmable computing machines abstractly.

Recall in Chapter 1, we de®ned a computer as a machine that can:

1. Acceptinput.
2. Execute a mechanical procedure.
3. Produce output.

So, our model of a computer needs to model these three things.

Modeling input. In real computers, input comes in many forms: typing on a
keyboard, moving a mouse, packets coming in from the network, an accelerom-
eter in the device, etc.

For our model, we want to keep things as simple as possible, though. From a
computational standpoint, it doesnt really matter how the input is collected. We
can represent any discrete input with a sequence of bits. Input devices like key-
boards are clearly discrete: there are a ®nite number of keys, and each key could
be assigned a unique number. Input from a pointing device like a mouse could
be continuous, but we can always identify some minimum detected movement

universal
computing machine

algorithm can be implemented by some Turing Machine. Chapter 12 explores
more deeply what it means to simulate every possible Turing Machine and ex-
plores the set of problems that can be solved by a Turing Machine.

Of course, any real machine is limited by the amount of space it has; the amount
of information a machine can process is limited by its memory. If the machine
does not have enough space to store 1000 bits, say, there is no way it can do a
computation whose input requires 1000 bits to describe. Any physical machine
has some limit on the number of bits it can store. Nevertheless, it is useful to
think about computing on Turing Machines. The simplicity of the model, and

its robustness, make it a useful way to think about computing even if it is not
possible to really build a truly universal computing machine.

Turing's model has proven to be remarkably robust. Despite being invented
before anything resembling a modern computer existed, nearly every comput-
ing machine ever imagined or built can be modeled well using Turing's simple
model. The important thing about the model is that we can simulate any com-
puter using a Turing Machine. Any step on any computer that operates using
standard physics and be simulated with a ®nite number of steps on a Turing
Machine. This means if we know how many steps it takes to solve some prob-
lem on a Turing Machine, the number of steps it takes on any other machine is
at most some multiple of that number. Hence, if we can reason about the num-
ber of steps required for a Turing Machine to solve a given problem, then we can
make strong and general claims about the number of steps it would take any
standard computer to solve the problem. We will show this more convincingly
in Chapter 12, but for now we assert it, and use it to reason about the cost of
executing various procedures in the following chapter.

We de®ne a Turing Machine that solves the problem of checking parentheses
are well-balanced. For example, in a Scheme expression, every opening left

Alan Turing was born in London in 1912, and developed his computing model
while at Cambridge in the 1930s. He developed the model to solve a famous
problem posed by David Hilbert in 1928. The problem, known as the Entschei-
dungsproblem (German for @ecision problem?) asked for an algorithm that could
determine the truth or falsehood of a mathematical statement. To solve the
problem, Turing ®rst needed a formal model of an algorithm. For this, he in-
vented the Turing Machine model described above, and de®ned an algorithm as
any Turing Machine that is guaranteed to eventually halt on any input. With

6.4 Summary

The power of computers comes from their programmability. Universal comput-
ers can be programmed to execute any algorithm. The Turing Machine model
provides a simple, abstract, model of a computing machine. Every algorithm
can be implemented as a Turing Machine, and a Turing Machine can simulate
any other reasonable computer.

As the ®rst computer programmer, Ada deserves the last word:

By the word operation, we mean any process which alters the mutual re-
lation of two or more things, be this relation of what kind it may. This is
the most general de®nition, and would include all subjects in the universe.
In abstract mathematics, of course operations alter those particular rela-
tions which are involved in the considerations of number and space, and
the results of operations are those peculiar results which correspond to the

