12

Computability

However unapproachable these problems may seem to us and however helpless we
stand before them, we have, nevertheless, the firm conviction that their solution
must follow by a finite number of purely logical processes. . . This conviction of the
solvability of every mathematical problem is a powerful incentive to the worker. We
hear within us the perpetual call: There is the problem. Seek its solution. You can
find it by pure reason; for in mathematics these is no ignorabimus.

David Hilbert, 1900

In this chapter we consider the question of what problems can and cannot be
solved by mechanical computation. This is the question of computability: a
problem is computable if it can be solved by some algorithm; a problem that
is noncomputable cannot be solved by any algorithm.

Section 12.1 considers first the analogous question for declarative knowledge:
are there true statements that cannot be proven by any proof? Section 12.2
introduces the Halting Problem, a problem that cannot be solved by any al-
gorithm. Section 12.3 sketches Alan Turing’s proof that the Halting Problem is
noncomputable. Section 12.4 discusses how to show other problems are non-
computable.

12.1 Mechanizing Reasoning

Humans have been attempting to mechanize reasoning for thousands of years.
Aristotle’s Organon developed rules of inference known as syllogisms to codify
logical deductions in approximately 350 BC.

Euclid went beyond Aristotle by developing a formal axiomatic system. An ax-
iomatic system is a formal system consisting of a set of axioms and a set of in-
ference rules. The goal of an axiomatic system is to codify knowledge in some
domain.

The axiomatic system Euclid developed in The Elements concerned construc-
tions that could be drawn using just a straightedge and a compass.

Euclid started with five axioms (more commonly known as postulates); an ex-
ample axiom is: A straight line segment can be drawn joining any two points. In
addition to the postulates, Euclid states five common notions, which could be
considered inference rules. An example of a common notion is: The whole is
greater than the part.

Starting from the axioms and common notions, along with a set of definitions
(e.g., defining a circle), Euclid proved 468 propositions mostly about geometry

computability

syllogisms

axiomatic system

proposition

238 12.1. Mechanizing Reasoning

and number theory. A proposition is a statement that is stated precisely enough
to be either true or false. Euclid’s first proposition is: given any line, an equilat-
eral triangle can be constructed whose edges are the length of that line.

proof A proof of a proposition in an axiomatic system is a sequence of steps that ends

consistent

complete

with the proposition. Each step must follow from the axioms using the infer-
ence rules. Most of Euclid’s proofs are constructive: propositions state that a
thing with a particular property exists, and proofs show steps for constructing
something with the stated property. The steps start from the postulates and fol-
low the inference rules to prove that the constructed thing resulting at the end
satisfies the requirements of the proposition.

A consistent axiomatic system is one that can never derive contradictory state-
ments by starting from the axioms and following the inference rules. If a system
can generate both A and not A for any proposition A, the system is inconsis-
tent. If the system cannot generate any contradictory pairs of statements it is
consistent.

A complete axiomatic system can derive all true statements by starting from the
axioms and following the inference rules. This means if a given proposition is
true, some proof for that proposition can be found in the system. Since we do
not have a clear definition of true (if we defined true as something that can be
derived in the system, all axiomatic systems would automatically be complete
by definition), we state this more clearly by saying that the system can decide
any proposition. This means, for any proposition P, a complete axiomatic sys-
tem would be able to derive either P or not P. A system that cannot decide all
statements in the system is incomplete. An ideal axiomatic system would be
complete and consistent: it would derive all true statements and no false state-
ments.

The completeness of a system depends on the set of possible propositions. Eu-
clid’s system is consistent but not complete for the set of propositions about ge-
ometry. There are statements that concern simple properties in geometry (a fa-
mous example is any angle can be divided into three equal sub-angles) that can-
not be derived in the system; trisecting an angle requires more powerful tools
than the straightedge and compass provided by Euclid’s postulates.

Figure 12.1 depicts two axiomatic systems. The one on the left one incomplete:
there are some propositions that can be stated in the system that are true for
which no valid proof exists in the system. The one on the right is inconsistent:
it is possible to construct valid proofs of both P and not P starting from the ax-
ioms and following the inference rules. Once a single contradictory proposi-
tion can be proven the system becomes completely useless. The contradictory
propositions amount to a proof that true = false, so once a single pair of con-
tradictory propositions can be proven every other false proposition can also be
proven in the system. Hence, only consistent systems are interesting and we
focus on whether it is possible for them to also be complete.

Russell's Paradox. Towards the end of the 19" century, many mathematicians
sought to systematize mathematics by developing a consistent axiomatic sys-
tem that is complete for some area of mathematics. One notable attempt was
Gottlob Frege’s Grundgestze der Arithmetik (1893) which attempted to develop
an axiomatic system for all of mathematics built from simple logic.

Chapter 12. Computability 239

All propositions All propositions

True
propositions

Provable Provable

propositions propositions

Incomplete system: at least one true Inconsistent system: there is a valid
proposition cannot be proven. proof of a proposition that is false.

Figure 12.1. Incomplete and inconsistent axiomatic systems.

Bertrand Russell discovered a problem with Frege’s system, which is now known
as Russell’s paradox. Suppose R is defined as the set containing all sets that do
not contain themselves as members. For example, the set of all prime numbers
does not contain itself as a member, so it is a member of R. On the other hand,
the set of all entities that are not prime numbers is a member of R. This set
contains all sets, since a set is not a prime number, so it must contain itself.

The paradoxical question is: is the set R a member of R? There are two possible
answers to consider but neither makes sense:

Yes: R is a member of R
We defined the set R as the set of all sets that do not contain themselves as
member. Hence, R cannot be a member of itself, and the statement that R
is a member of R must be false.

No: R is not a member of R
If R is not a member of R, then R does not contain itself and, by definition,
must be a member of set R. This is a contradiction, so the statement that R
is not a member of R must be false.

The question is a perfectly clear and precise binary question, but neither the
“yes” nor the “no” answer makes any sense. Symbolically, we summarize the
paradox: for any sets, s € Rif and only if s ¢ s. Selecting s = R leads to the
contradiction: R € Rifand onlyif R ¢ R.

Whitehead and Russell attempted to resolve this paradox by constructing their
system to make it impossible to define the set R. Their solution was to introduce
types. Each set has an associated type, and a set cannot contain members of its
own type. The set types are defined recursively:

* A type zero set is a set that contains only non-set objects.
* A type-n set can only contain sets of type n — 1 and below.

This definition avoids the paradox: the definition of R must now define R as a
set of type k set containing all sets of type k — 1 and below that do not contain
themselves as members. Since R is a type k set, it cannot contain itself, since it
cannot contain any type k sets.

Russell’s paradox

240 12.1. Mechanizing Reasoning

pPrincipia In 1913, Whitehead and Russell published Principia Mathematica, a bold at-
Mathematica tempt to mechanize mathematical reasoning that stretched to over 2000 pages.
Whitehead and Russell attempted to derive all true mathematical statements
about numbers and sets starting from a set of axioms and formal inference rules.
They employed the type restriction to eliminate the particular paradox caused

by set inclusion, but it does not eliminate all self-referential paradoxes.

For example, consider this paradox named for the Cretan philosopher Epimenides
who was purported to have said “All Cretans are liars”. If the statement is true,
than Epimenides, a Cretan, is not a liar and the statement that all Cretans are
liars is false. Another version is the self-referential sentence: this statement is
false. If the statement is true, then it is true that the statement is false (a contra-
diction). If the statement is false, then it is a true statement (also a contradic-
tion). It was not clear until Godel, however, if such statements could be stated in
the Principia Mathematica system.

12.1.1 Godel’s Incompleteness Theorem

Kurt Godel was born in Brno (then in Austria-Hungary, now in the Czech Re-
public) in 1906. Godel proved that the axiomatic system in Principia Mathemat-
ica could not be complete and consistent. More generally, Godel showed that
no powerful axiomatic system could be both complete and consistent: no mat-
ter what the axiomatic system is, if it is powerful enough to express a notion of
proof, it must also be the case that there exist statements that can be expressed
in the system but cannot be proven either true or false within the system.

Godel with . .o . .
Einstein, Princeton Godel’s proof used construction: to prove that Principia Mathematica contains

e i opoceasugy Statements which cannot be proven either true or false, it is enough to find one

Archives

such statement. The statement Godel found:

Gppm: Statement Gpys does not have any proof in the system
of Principia Mathematica.

Similarly to Russel’s Paradox, this statement leads to a contradiction. It makes
no sense for Gpy, to be either true or false:

Statement Gpy, is provable in the system.
If Gpys is proven, then it means Gpy, does have a proof, but Gpy, stated that
Gpym has no proof. The system is inconsistent: it can be used to prove a
statement that is not true.

Statement Gpj, is not provable in the system.
Since Gpp; cannot be proven in the system, Gpy, is a true statement. The
system is incomplete: we have a true statement that is not provable in the
system.

The proof generalizes to any axiomatic system, powerful enough to express a
corresponding statement G:

G: Statement G does not have any proof in the system.

For the proof to be valid, it is necessary to show that statement G can be ex-
pressed in the system.

To express G formally, we need to consider what it means for a statement to not
have any proof in the system. A proof of the statement G is a sequence of steps,
To, Ty, T, ..., Tn. Each step is the set of all statements that have been proven

Chapter 12. Computability 241

true so far. Initially, T is the set of axioms in the system. To be a proof of G,
Tn must contain G. To be a valid proof, each step should be producible from
the previous step by applying one of the inference rules to statements from the
previous step.

To express statement G an axiomatic system needs to be powerful enough to
express the notion that a valid proof does not exist. Godel showed that such a
statement could be constructed using the Principia Mathematica system, and
using any system powerful enough to be able to express interesting properties.
That is, in order for an axiomatic system to be complete and consistent, it must
be so weak that it is not possible to express this statement has no proof in the
system.

12.2 The Halting Problem

Godel established that no interesting and consistent axiomatic system is capable
of proving all true statements in the system. Now we consider the analogous
question for computing: are there problems for which no algorithm exists?

Recall these definitions form Chapters 1 and 4:

problem: A description of an input and a desired output.
procedure: A specification of a series of actions.

algorithm: A procedure that is guaranteed to always terminate.

A procedure solves a problem if that procedure produces a correct output for
every possible input. If that procedure always terminates, it is an algorithm. So,
the question can be stated as: are there problems for which no procedure exists
that produces the correct output for every possible problem instance in a finite
amount of time?

A problem is computable if there exists an algorithm that solves the problem. computable

It is important to remember that in order for an algorithm to be a solution for

a problem P, it must always terminate (otherwise it is not an algorithm) and

must always produce the correct output for all possible inputs to P. If no such

algorithm exists, the problem is noncomputable.! noncomputable

Alan Turing proved that noncomputable problems exist. The way to show that
uncomputable problems exist is to find one, similarly to the way Gédel showed
unprovable true statements exist by finding an unprovable true statement.

The problem Turing found is known as the Halting Problem:?
Halting Problem
Input: A string representing a Python program.

Output: If evaluating the input program would ever finish, output True.
Otherwise, output False.

IThe terms decidable and undecidable are sometimes used to mean the same things as com-
putable and noncomputable.

2This problem is a variation on Turing’s original problem, which assumed a procedure that takes
one input. Of course, Turing did not define the problem using a Python program since Python had
not yet been invented when Turing proved the Halting Problem was noncomputable in 1936. In fact,
nothing resembling a programmable digital computer would emerge until several years later.

242 12.2. The Halting Problem

Suppose we had a procedure halts that solves the Halting Problem. The input to
halts is a Python program expressed as a string.

For example, halts('(+ 2 3)") should evaluate to True, halts('while True: pass') should
evaluate to False (the Python pass statement does nothing, but is needed to
make the while loop syntactically correct), and

halts("''""
def fibo(n):
if n==1o0r n==2:return 1
else: return fibo(n—1) + fibo(n—2)
fibo(60)
)

should evaluate to True. From the last example, it is clear that halts cannot be
implemented by evaluating the expression and outputting True if it terminates.
The problem is knowing when to give up and output False. As we analyzed in
Chapter 7, evaluating fibo(60) would take trillions of years; in theory, though, it
eventually finishes so halts should output True.

This argument is not sufficient to prove that halts is noncomputable. It just
shows that one particular way of implementing halts would not work. To show
that haltsis noncomputable, we need to show that it is impossible to implement
a halts procedure that would produce the correct output for all inputs in a finite
amount of time.

Here is another example that suggests (but does not prove) the impossibility of
halts (where sumOfTwoPrimes is defined as an algorithm that take a number as
input and outputs True if the number is the sum of two prime numbers and False
otherwise):

halts('n = 4; while sumOfTwoPrimes(n): n = n + 2')

This program halts if there exists an even number greater than 2 that is not the
sum of two primes. We assume unbounded integers even though every actual
computer has a limit on the largest number it can represent. Our computing
model, though, uses an infinite tape, so there is no arbitrary limit on number
sizes.

Knowing whether or not the program halts would settle an open problem known
as Goldbach’s Conjecture: every even integer greater than 2 can be written as the
sum of two primes. Christian Goldbach proposed a form of the conjecture in a
letter to Leonhard Euler in 1742. Euler refined it and believed it to be true, but
couldn’t prove it.

With a halts algorithm, we could settle the conjecture using the expression above:
if the result is False, the conjecture is proven; if the result is True, the conjecture
is disproved. We could use a halts algorithm like this to resolve many other open
problems. This strongly suggests there is no halts algorithm, but does not prove
it cannot exist.

Proving Noncomputability. Proving non-existence is requires more than just
showing a hard problem could be solved if something exists. One way to prove
non-existence of an X, is to show that if an X exists it leads to a contradiction.

Chapter 12. Computability 243

We prove that the existence of a halts algorithm leads to a contradiction, so no
halts algorithm exists.

We obtain the contradiction by showing one input for which the halts procedure
could not possibly work correctly. Consider this procedure:

def paradox():
if halts('paradox()'): while True: pass

The body of the paradox procedure is an if expression. The consequent expres-
sion is a never-ending loop.

The predicate expression cannot sensibly evaluate to either True or False:

halts(‘paradox()’) = True
If the predicate expression evaluates to True, the consequent block is eval-
uated producing a never-ending loop. Thus, if halts('paradox()) evaluates
to True, the evaluation of an application of paradox never halts. But, this
means the result of halts('paradox()’) was incorrect.

halts(‘paradox()’) = False
If the predicate expression evaluates to False, the alternate block is evalu-
ated. Itis empty, so evaluation terminates. Thus, the evaluation of paradox()
terminates, contradicting the result of halts(paradox()").

Either result for halts(" paradox()') leads to a contradiction! The only sensible
thing halts could do for this input is to not produce a value. That means there
is no algorithm that solves the Halting Problem. Any procedure we define to
implement halts must sometimes either produce the wrong result or fail to pro-
duce a result at all (that is, run forever without producing a result). This means
the Halting Problem is noncomputable.

There is one important hole in our proof: we argued that because paradox does
not make sense, something in the definition of paradox must not exist and iden-
tified halts as the component that does not exist. This assumes that everything
else we used to define paradox does exist.

This seems reasonable enough—they are built-in to Python so they seem to ex-
ist. But, perhaps the reason paradox leads to a contradiction is because True
does not really exist or because it is not possible to implement an if expression
that strictly follows the Python evaluation rules. Although we have been using
these and they seems to always work fine, we have no formal model in which
to argue that evaluating True always terminates or that an if expression means
exactly what the evaluation rules say it does.

Our informal proof is also insufficient to prove the stronger claim that no algo-
rithm exists to solve the halting problem. All we have shown is that no Python
procedure exists that solves halts. Perhaps there is a procedure in some more
powerful programming language in which it is possible to implement a solution
to the Halting Problem. In fact, we will see that no more powerful programming
language exists.

A convincing proof requires a formal model of computing. This is why Alan Tur-
ing developed a model of computation.

Universal Turing
Machine

244 12.3. Universality

12.3 Universality

Recall the Turing Machine model from Chapter 6: a Turing Machine consists
of an infinite tape divided into discrete square into which symbols from a fixed
alphabet can be written, and a tape head that moves along the tape. On each
step, the tape head can read the symbol in the current square, write a symbol in
the current square, and move left or right one square or halt. The machine can
keep track of a finite number of possible states, and determines which action to
take based on a set of transition rules that specify the output symbol and head
action for a given current state and read symbol.

Turing argued that this simple model corresponds to our intuition about what
can be done using mechanical computation. Recall this was 1936, so the model
for mechanical computation was not what a mechanical computer can do, but
what a human computer can do. Turing argued that his model corresponded
to what a human computer could do by following a systematic procedure: the
infinite tape was as powerful as a two-dimensional sheet of paper or any other
recording medium, the set of symbols must be finite otherwise it would not be
possible to correctly distinguish all symbols, and the number of machine states
must be finite because there is a limited amount a human can keep in mind at
one time.

We can enumerate all possible Turing Machines. One way to see this is to de-
vise a notation for writing down any Turing Machine. A Turing Machine is com-
pletely described by its alphabet, states and transition rules. We could write
down any Turing Machine by numbering each state and listing each transition
rule as a tuple of the current state, alphabet symbol, next state, output symbol,
and tape direction. We can map each state and alphabet symbol to a number,
and use this encoding to write down a unique number for every possible Turing
Machine. Hence, we can enumerate all possible Turing Machines by just enu-
merating the positive integers. Most positive integers do not correspond to valid
Turing Machines, but if we go through all the numbers we will eventually reach
every possible Turing Machine.

This is step towards proving that some problems cannot be solved by any algo-
rithm. The number of Turing Machines is less than the number of real numbers.
Both numbers are infinite, but as explained in Section 1.2.2, Cantor’s diagonal-
ization proof showed that the real numbers are not countable. Any attempt to
map the real numbers to the integers must fail to include all the real numbers.
This means there are real numbers that cannot be produced by any Turing Ma-
chine: there are fewer Turing Machines than there are real numbers, so there
must be some real numbers that cannot be produced by any Turing Machine.

The next step is to define the machine depicted in Figure 12.2. A Universal Tur-
ing Machine is a machine that takes as input a number that identifies a Turing
Machine and simulates the specified Turing Machine running on initially empty
input tape.

The Universal Turing Machine can simulate any Turing Machine. In his proof,
Turing describes the transition rules for such a machine. It simulates the Turing
Machine encoded by the input number. One can imagine doing this by using
the tape to keep track of the state of the simulated machine. For each step, the
universal machine searches the description of the input machine to find the ap-

Chapter 12. Computability 245

Universal Result of running
Turing TM N on empty
Machine input tape

Figure 12.2. Universal Turing Machine.

propriate rule. This is the rule for the current state of the simulated machine
on the current input symbol of the simulated machine. The universal machine
keeps track of the machine and tape state of the simulated machine, and simu-
lates each step. Thus, there is a single Turing Machine that can simulate every
Turing Machine.

Since a Universal Turing Machine can simulate every Turing Machine, and a Tur-
ing Machine can perform any computation according to our intuitive notion of
computation, this means a Universal Turing Machine can perform all computa-
tions. Using the universal machine and a diagonalization argument similar to
the one above for the real numbers, Turing reached a similar contradiction for a
problem analogous to the Halting Problem for Python programs but for Turing
Machines instead.

If we can simulate a Universal Turing Machine in a programming language, that
language is a universal programming language. There is some program that can
be written in that language to perform every possible computation.

To show that a programming language is universal, it is sufficient to show that
it can simulate any Turing Machine, since a Turing Machine can perform ev-
ery possible computation. To simulate a Universal Turing Machine, we need
some way to keep track of the state of the tape (for example, the list datatypes
in Scheme or Python would be adequate), a way to keep track of the internal
machine state (a number can do this), and a way to execute the transition rules
(we could define a procedure that does this using an if expression to make de-
cisions about which transition rule to follow for each step), and a way to keep
going (we can do this in Scheme with recursive applications). Thus, Scheme is a
universal programming language: one can write a Scheme program to simulate
a Universal Turing Machine, and thus, perform any mechanical computation.

12.4 Proving Non-Computability

We can show that a problem is computable by describing a procedure and prov-
ing that the procedure always terminates and always produces the correct an-
swer. It is enough to provide a convincing argument that such a procedure ex-
ists; finding the actual procedure is not necessary (but often helps to make the
argument more convincing).

To show that a problem is not computable, we need to show that no algorithm
exists that solves the problem. Since there are an infinite number of possible
procedures, we cannot just list all possible procedures and show why each one
does not solve the problem. Instead, we need to construct an argument showing
that if there were such an algorithm it would lead to a contradiction.

The core of our argument is based on knowing the Halting Problem is noncom-
putable. If a solution to some new problem P could be used to solve the Halting
Problem, then we know that P is also noncomputable. That is, no algorithm ex-

universal
programming
language

reduction

reducible

246 12.4. Proving Non-Computability

ists that can solve P since if such an algorithm exists it could be used to also solve
the Halting Problem which we already know is impossible.

Reduction Proofs. The proof technique where we show that a solution for some
problem P can be used to solve a different problem Q is known as a reduction.

A problem Q is reducible to a problem P if a solution to P could be used to solve
Q. This means that problem Q is no harder than problem P, since a solution to
problem Q leads to a solution to problem P.

Example 12.1: Prints-Three Problem

Consider the problem of determining if an application of a procedure would
ever print 3:

Prints-Three
Input: A string representing a Python program.

Output: If evaluating the input program would print 3, output True; oth-
erwise, output False.

We show the Prints-Three Problem is noncomputable by showing that it is as
hard as the Halting Problem, which we already know is noncomputable.

Suppose we had an algorithm printsThree that solves the Prints-Three Problem.
Then, we could define halts as:

def halts(p):
return printsThree(p + '; print(3)')

The printsThree application would evaluate to True if evaluating the Python pro-
gram specified by p would halt since that means the print(3) statement ap-
pended to p would be evaluated. On the other hand, if evaluating p would not
halt, the added print statement never evaluated. As long as the program speci-
fied by p would never print 3, the application of printsThree should evaluate to
False. Hence, if a printsThree algorithm exists, we would use it to implement an
algorithm that solves the Halting Problem.

The one wrinkle is that the specified input program might print 3 itself. We can
avoid this problem by transforming the input program so it would never print
3 itself, without otherwise altering its behavior. One way to do this would be to
replace all occurrences of print (or any other built-in procedure that prints) in
the string with a new procedure, dontprint that behaves like print but doesn’t
actually print out anything. Suppose the replacePrints procedure is defined to
do this. Then, we could use printsThree to define halts:

def halts(p): return printsThree(replacePrints(p) + '; print(3)")

We know that the Halting Problem is noncomputable, so this means the Prints-
Three Problem must also be noncomputable.

Exploration 12.1: Virus Detection

The Halting Problem and Prints-Three Problem are noncomputable, but do seem
to be obviously important problems. It is useful to know if a procedure appli-
cation will terminate in a reasonable amount of time, but the Halting Problem

Chapter 12. Computability 247

does not answer that question. It concerns the question of whether the proce-
dure application will terminate in any finite amount of time, no matter how long
itis. This example considers a problem for which it would be very useful to have
a solution for it one existed.

A virus is a program that infects other programs. A virus spreads by copying its
own code into the code of other programs, so when those programs are executed
the virus will execute. In this manner, the virus spreads to infect more and more
programs. A typical virus also includes a malicious payload so when it executes
in addition to infecting other programs it also performs some damaging (cor-
rupting data files) or annoying (popping up messages) behavior. The Is-Virus
Problem is to determine if a procedure specification contains a virus:

Is-Virus
Input: A specification of a Python program.

Output: If the expression contains a virus (a code fragment that will infect
other files) output True. Otherwise, output False.

We demonstrate the Is-Virus Problem is noncomputable using a similar strat-
egy to the one we used for the Prints-Three Problem: we show how to define a
halts algorithm given a hypothetical isVirus algorithm. Since we know halts is
noncomputable, this shows there is no isVirus algorithm.

Assume infectFiles is a procedure that infects files, so the result of evaluating
isVirus(infectFiles()") is True. We could define halts as:

def halts(p):
return isVirus(p +'; infectFiles()")

This works as long as the program specified by p does not exhibit the file-infecting
behavior. If it does, p could infect a file and never terminate, and halts would
produce the wrong output. To solve this we need to do something like we did in
the previous example to hide the printing behavior of the original program.

A rough definition of file-infecting behavior would be to consider any write to
an executable file to be an infection. To avoid any file infections in the spe-
cific program, we replace all procedures that write to files with procedures that
write to shadow copies of these files. For example, we could do this by creating
a new temporary directory and prepend that path to all file names. We call this
(assumed) procedure, sandBox, since it transforms the original program speci-
fication into one that would execute in a protected sandbox.

def halts(p): isVirus(sandBox(p) +'; infectFiles()")

Since we know there is no algorithm that solves the Halting Problem, this proves
that there is no algorithm that solves the Is-Virus problem.

Virus scanners such as Symantec’s Norton AntiVirus attempt to solve the Is-
Virus Problem, but its non-computability means they are doomed to always fail.
Virus scanners detect known viruses by scanning files for strings that match sig-
natures in a database of known viruses. As long as the signature database is
frequently updated they may be able to detect currently spreading viruses, but
this approach cannot detect a new virus that will not match the signature of a
previously known virus.

Iam rather puzzled
why you draw this
distinction between
proof finders and
proof checkers. It
seems to me rather
unimportant as one
can always get a
proof finder from a
proof checker, and
the converse is
almost true: the
converse false if for
instance one allows
the proof finder to
go through a proof
in the ordinary way,
and then, rejecting
the steps, to write
down the final
formula as a 'proof’
of itself. One can
easily think up
suitable restrictions
on the idea of proof
which will make
this converse true
and which agree
well with our ideas
of what a proof
should be like. I am
afraid this may be
more confusing to
you than
enlightening.

Alan Turing, letter to
Max Newman, 1940

248 12.4. Proving Non-Computability

Sophisticated virus scanners employ more advanced techniques to attempt to
detect complex viruses such as metamorphic viruses that alter their own code
as they propagate to avoid detection. But, because the general Is-Virus Prob-
lem is noncomputable, we know that it is impossible to create a program that
always terminates and that always correctly determines if an input procedure
specification is a virus.

Exercise 12.1. Is the Launches-Missiles Problem described below computable?
Provide a convincing argument supporting your answer.

Launches-Missiles
Input: A specification of a procedure.

Output: If an application of the procedure would lead to the missiles be-
ing launched, outputs True. Otherwise, outputs False.

You may assume that the only thing that causes the missiles to be launched is an
application of the launchMissiles procedure.

Exercise 12.2. Is the Same-Result Problem described below computable? Pro-
vide a convincing argument supporting your answer.

Same-Result
Input: Specifications of two procedures, P and Q.

Output: If an application of P terminates and produces the same value
as applying Q, outputs True. If an application of P does not terminate,
and an application of Q also does not terminate, outputs True. Otherwise,
outputs False.

Exercise 12.3. Is the Check-Proof Problem described below computable? Pro-
vide a convincing argument supporting your answer.

Check-Proof
Input: A specification of an axiomatic system, a statement (the theorem),
and a proof (a sequence of steps, each identifying the axiom that is ap-
plied).

Output: Outputs True if the proof is a valid proof of the theorem in the
system, or False if it is not a valid proof.

Exercise 12.4. Is the Find-Finite-Proof Problem described below computable?
Provide a convincing argument supporting your answer.

Find-Finite-Proof
Input: A specification of an axiomatic system, a statement (the theorem),
and a maximum number of steps (max-steps).

Output: If there is a proof in the axiomatic system of the theorem that
uses max-steps or fewer steps, outputs True. Otherwise, outputs False.

Chapter 12. Computability 249

0/1,R

1/1,Halt

1/1,L
Figure 12.3. Two-state Busy Beaver Machine.

Exercise 12.5. || Is the Find-Proof Problem described below computable? Pro-
vide a convincing argument why it is or why it is not computable.

Find-Proof
Input: A specification of an axiomatic system, and a statement (the theo-
rem).

Output: If there is a proofin the axiomatic system of the theorem, outputs
True. Otherwise, outputs False.

Exploration 12.2: Busy Beavers

Consider the Busy-Beaver Problem (devised by Tibor Radé in 1962):

Busy-Beaver
Input: A positive integer, n.
Output: A number representing that maximum number of steps a Turing

Machine with n states and a two-symbol tape alphabet can run starting
on an empty tape before halting.

We use 0 and 1 for the two tape symbols, where the blank squares on the tape are
interpreted as 0Os (alternately, we could use blank and X as the symbols, but it is
more natural to describe machines where symbols are 0 and 1, so we can think
of the initially blank tape as containing all 0s).

For example, if the Busy Beaver input # is 1, the output should be 1. The best
we can do with only one state is to halt on the first step. If the transition rule
for a 0 input moves left, then it will reach another 0 square and continue forever
without halting; similarly it if moves right.

For n = 2, there are more options to consider. The machine in Figure 12.3 runs
for 6 steps before halting, and there is no two-state machine that runs for more
steps. One way to support this claim would be to try simulating all possible two-
state Turing Machines.

Busy Beaver numbers increase extremely quickly. The maximum number of
steps for a three-state machine is 21, and for a four-state machine is 107. The
value for a five-state machine is not yet known, but the best machine found to
date runs for 47,176,870 steps! For six states, the best known result, discovered
in 2007 by Terry Ligocki and Shawn Ligocki, is over 2879 decimal digits long.

We can prove the Busy Beaver Problem is noncomputable by reducing the Halt-
ing Problem to it. Suppose we had an algorithm, bb(n), that takes the number

250 12.4. Proving Non-Computability

of states as input and outputs the corresponding Busy Beaver. Then, we could
solve the Halting Problem for a Turing Machine:

TM Halting Problem
Input: A string representing a Turing Machine.

Output: If executing the input Turing Machine starting with a blank tape
would ever finish, output True. Otherwise, output False.

The TM Halting Problem is different from the Halting Problem as we defined
it earlier, so first we need to show that the TM Halting Problem is noncom-
putable by showing it could be used to solve the Python Halting Problem. Be-
cause Python is universal programming language, it is possible to transform any
Turing Machine into a Python program. Once way to do this would be to write
a Universal Turing Machine simulator in Python, and then create a Python pro-
gram that first creates a tape containing the input Turing Machine description,
and then calls the Universal Turing Machine simulator on that input. This shows
that the TM Halting Problem is noncomputable.

Next, we show that an algorithm that solves the Busy Beaver Problem could be
used to solve the TM Halting Problem. Here’s how (in Pythonish pseudocode):

def haltsTM(m):

states = numberOfStates(m)

maxSteps = bb(states)

state=0

tape =]

for step in range(0, maxSteps):
state, tape = simulateOneStep(m, state, tape)
if halted(state): return True

return False

The simulateOneStep procedure takes as inputs a Turing Machine description,
its current state and tape, and simulates the next step on the machine. So,
haltsTM simulates up to bb(n) steps of the input machine m where 7 is the num-
ber of states in m. Since bb(n) is the maximum number of steps a Turing Ma-
chine with # states can execute before halting, we know if m has not halted in
the simulate before maxSteps is reached that the machine m will never halt, and
can correctly return False. This means there is no algorithm that can solve the
Busy Beaver Problem.

Exercise 12.6. Confirm that the machine showing in Figure 12.3 runs for 6 steps
before halting.

Chapter 12. Computability 251

Exercise 12.7. Prove the Beaver Bound problem described below is also non-
computable:

Beaver-Bound
Input: A positive integer, n.

Output: A number that is greater than the maximum number of steps a
Turing Machine with n states and a two-symbol tape alphabet can run
starting on an empty tape before halting.

A valid solution to the Beaver-Bound problem can produce any result for # as
long as it is greater than the Busy Beaver value for n.

Exercise 12.8. Find a 5-state Turing Machine that runs for more than
47,176,870 steps, or prove that no such machine exists.
|

12.5 Summary

Although today’s computers can do amazing things, many of which could not
even have been imagined twenty years ago, there are problems that can never
be solved by computing. The Halting Problem is the most famous example:
it is impossible to define a mechanical procedure that always terminates and
correctly determines if the computation specified by its input would terminate.
Once we know the Halting Problem is noncomputable, we can show that other
problems are also noncomputable by illustrating how a solution to the other
problem could be used to solve the Halting Problem which we know to be im-
possible.

Noncomputable problems frequently arise in practice. For example, identify-
ing viruses, analyzing program paths, and constructing proofs, are all noncom-
putable problems.

Just because a problem is noncomputable does not mean we cannot produce
useful programs that address the problem. These programs provide approxi-
mate solutions, which are often useful in practice. They produce the correct re-
sults on many inputs, but on some inputs must either fail to produce any result
or produce an incorrect result.

