Computing

In their capacity as a tool, computers will be but a ripple on the surface of our
culture. In their capacity as intellectual challenge, they are without precedent in
the cultural history of mankind.

Edsger Dijkstra, 1972 Turing Award Lecture

The ®rst million years of hominid tool development focused on developing tools

to amplify, and later mechanize, our physical abilities to enable us to move faster,
reach higher, and hit harder. We have developed tools that amplify physical force
by the trillions and increase the speeds at which we can travel by the thousands.

Tools that amplify intellectual abilities are much rarer. While some animals have
developed tools to amplify their physical abilities, only humans have developed
tools to substantially amplify our intellectual abilities and it is those advances
that have enabled humans to dominate the planet. The ®rst key intellect am-
pli®er was language. Language provided the ability to transmit our thoughts to
others, as well as to use our own minds more effectively. The next key intellect
ampli®er was writing, which enabled the storage and transmission of thoughts
over time and distance.

Computing is the ultimate mental ampli®erbcomputers can mechanize any in-
tellectual activity we can imagine. Automatic computing radically changes how
humans solve problems, and even the kinds of problems we can imagine solv-
ing. Computing has changed the world more than any other invention of the
past hundred years, and has come to pervade nearly all human endeavors. Yet,
we are just at the beginning of the computing revolution; today's computing of-
fers just a glimpse of the potential impact of computing.

There are two reasons why everyone should study computing:

1. Nearly all of the most exciting and important technologies of today and
tomorrow are driven by computing.

2. Understanding computing illuminates deep insights and questions into
the nature of our minds, our culture, and our universe.

Anyone who has submitted a query to Google, watched Toy Story, had LASIK

eye surgery, made a cell phone call, seen a Cirque Du Soleil show, shopped with a
credit card, or microwaved a pizza should be convinced of the ®rst reason. None
of these would be possible without the tremendous advances in computing over
the past half century.

Although this book will touch on on some exciting applications of computing,
our primary focus is on the second reason, which may seem more surprising.

It may be true that
you have to be able
to read in order to
®Il out forms at the
DMV, but that's not
why we teach
children to read. We
teach them to read
for the higher
purpose of allowing
them access to
beautiful and

meaningful ideas.
Paul Lockhart,
Lockhart's Lament

2 1.1. Processes, Procedures, and Computers

Computing changes how we think about problems and how we understand the
world. The goal of this book is to teach you that new way of thinking.

1.1 Processes, Procedures, and Computers

information ~ Computer science is the study of information processes. A process is a sequence
processes of steps. Each step changes the state of the world in some small way, and the
result of all the steps produces some goal state. For example, baking a cake,
mailing a letter, and planting a tree are all processes. Because they involve phys-
ical things like sugar and dirt, however, they are not pure information processes.
Computer science focuses on processes that involve abstract information rather
than physical things.

The boundaries between the physical world and pure information processes,
however, are often fuzzy. Real computers operate in the physical world: they
obtain input through physical means (e.g., a user pressing a key on a keyboard
that produces an electrical impulse), and produce physical outputs (e.g., an im-
age displayed on a screen). By focusing on abstract information, instead of the
physical ways of representing and manipulating information, we simplify com-
putation to its essence to better enable understanding and reasoning.

procedure A procedure is a description of a process. A simple process can be described
just by listing the steps. The list of steps is the procedure; the act of following
them is the process. A procedure that can be followed without any thought is

algorithm ~ called a mechanical procedure. An algorithm is a mechanical procedure that is
guaranteed to eventually ®nish.

For example, here is a procedure for making coffee, adapted from the actual

Amathematicianis ~ directions that come with a major coffeemaker:
a machine for

turning coffee into Lift and open the coffeemaker lid.
Attributtehdet?)rggls- Place a basket-type ®lter into the ®lter basket.
Erdés Add the desired amount of coffee and shake to level the coffee.

Fill the decanter with cold, fresh water to the desired capacity.
Pour the water into the water reservoir.

Close the lid.

Place the empty decanter on the warming plate.

Press the ON button.

ONoOhWNE

Describing processes by just listing steps like this has many limitations. First,
natural languages are very imprecise and ambiguous. Following the steps cor-
rectly requires knowing lots of unstated assumptions. For example, step three
assumes the operator understands the difference between coffee grounds and
®nished coffee, and can infer that this use of 3offee® refers to coffee grounds
since the end goal of this process is to make drinkable coffee. Other steps as-

If you steal property, sume the coffeemaker is plugged in and sitting on a at surface.
you must report its

fair market valuein -~ One could, of course, add lots more details to our procedure and make the lan-
yourincomeinthe gyage more precise than this. Even when a lot of effort is put into writing pre-
unﬁiriz(:ﬁ:tsﬁ]'é cisely and clearly, however, natural languages such as English are inherently am-

year,youreturnitto Riguous. This is why the United States tax code is 3.4 million words long, but

its rightful owner. lawyers can still spend years arguing over what it really means.
IRS Publication, Your

FederalIncome Tax - Another problem with this way of describing a procedure is that the size of the

Chapter 1. Computing 3

description is proportional to the number of steps in the process. This is ®ne
for simple processes that can be executed by humans in a reasonable amount
of time, but the processes we want to execute on computers involve trillions of
steps. This means we need more ef®cient ways to describe them than just listing
each step one-by-one. The languages we use to program computers provide
ways to de®ne long and complex processes with short procedures.

To program computers, we need tools that allow us to describe processes pre-
cisely and succinctly. Since the procedures are carried out by a machine, every
step needs to be described; we cannot rely on the operator having &ommon
sense® (for example, to know how to ®ll the coffeemaker with water without ex-
plaining that water comes from a faucet, and how to turn the faucet on). Instead,
we need mechanical procedures that can be followed without any thinking.

A computer is a machine that can: computer

1. Accept input. Input could be entered by a human typing at a keyboard,
received over a network, or provided automatically by sensors attached to
the computer.

2. Execute a mechanical procedure, that is, a procedure where each step can
be executed without any thought.

3. Produce output. Output could be data displayed to a human, but it could
also be anything that effects the world outside the computer such as elec-
trical signals that control how a device operates.

Computers exist in a wide range of forms, and thousands of computers are hid-

den in devices we use everyday but dont think of as computers such as cars,

phones, TVs, microwave ovens, and access cards. Our primary focus is on uni-

versal computers, which are computers that can perform all possible mechan- universal
ical computations on discrete inputs except for practical limits on space and computers
time. The next section explains what it discrete inputs means; Chapters 6 and 12

explore more deeply what it means for a computer to be universal.

1.2 Measuring Computing Power

For physical machines, we can compare the power of different machines by
measuring the amount of mechanical work they can perform within a given
amount of time. This power can be captured with units like horsepower and
watt. Physical power is not a very useful measure of computing power, though,
since the amount of computing achieved for the same amount of energy varies
greatly. Energy is consumed when a computer operates, but consuming energy
is not the purpose of using a computer.

Two properties that measure the power of a computing machine are:

1. How much information it can process?
2. How fast can it process?

We defer considering the second property until Part Il, but consider the ®rst
question here.

1.2.1 Information

Informally, we use information to mean knowledge. But to understand informa- information
tion quantitatively, as something we can measure, we need a more precise way

to think about information.

bit

binary question

4 1.2. Measuring Computing Power

The way computer scientists measure information is based on how what is known
changes as a result of obtaining the information. The primary unit of informa-
tionis a bit . One bit of information halves the amount of uncertainty. It is equiv-
alent to answering a 2yes°® or ano° question, where either answer is equally likely
beforehand. Before learning the answer, there were two possibilities; after learn-
ing the answer, there is one.

We call a question with two possible answers a binary question . Since a bit can
have two possible values, we often represent the values as 0 and 1.

For example, suppose we perform a fair coin toss but do not reveal the result.
Half of the time, the coin will land 2heads®, and the other half of the time the
coin will land 2tails® Without knowing any more information, our chances of
guessing the correct answer are % One bit of information would be enough to
convey either 2heads® or 2tails®; we can use 0 to represent 2heads® and 1 to rep-

resent ails®. So, the amount of information in a coin toss is one bit.

Similarly, one bit can distinguish between the values 0 and 1:

Example 1.1: Dice

How many bits of information are there in the outcome of tossing a six-sided
die?

There are six equally likely possible outcomes, so without any more information
we have a one in six chance of guessing the correct value. One bit is not enough
to identify the actual number, since one bit can only distinguish between two
values. We could use ®ve binary questions like this:

This is quite inef®cient, though, since we need up to ®ve questions to identify
the value (and on average, expect to need 3% guestions). Can we identify the
value with fewer than 5 questions?

Chapter 1. Computing 5

Our goal is to identify questions where the 2yes® and 2no® answers are equally
likelybthat way, each answer provides the most information possible. This is
not the case if we start with, 2ls the value 6?°, since that answer is expected to be
ayes® only one time in six. Instead, we should start with a question like, 2ls the
value at least 47° Here, we expect the answer to be 2yes® one half of the time,
and the 2yes® and 2no® answers are equally likely. If the answer is @yes®, we know
the result is 4, 5, or 6. With two more bits, we can distinguish between these
three values (note that two bits is actually enough to distinguish among four
different values, so some information is wasted here). Similarly, if the answer
to the ®rst question is no, we know the result is 1, 2, or 3. We need two more
bits to distinguish which of the three values it is. Thus, with three bits, we can

distinguish all six possible outcomes.

No Yes

No E Yes No % t
Y Yes
3 Ry
6
No Yes No
¥ X M Yes
1 2 4 5

Three bits can convey more information that just six possible outcomes, how-

ever. In the binary question tree, there are some questions where the answer
is not equally likely to be @yes® and 2nao° (for example, we expect the answer to

s the value 3?° to be 2yes® only one out of three times). Hence, we are not
obtaining a full bit of information with each question.

Each bit doubles the number of possibilities we can distinguish, so with three

bits we can distinguish between 2 2 2 = 8possibilities. In general, with n bits,

we can distinguish between 2" possibilities. Conversely, distinguishing among k
possible values requires log, k bits. The logarithm is de®ned such that if a= b° logarithm
then log,a = c. Since each bit has two possibilities, we use the logarithm base

2 to determine the number of bits needed to distinguish among a set of distinct

possibilities. For our six-sided die, log,6 2.58 so we need approximately 2.58

binary questions. But, questions are discrete: we cant ask 0.580f a question, so

we need to use three binary questions.

Trees. Figure 1.1 depicts a structure of binary questions for distinguishing
among eight values. We call this structure a binary tree . We will see many useful binary tree
applications of tree-like structures in this book.

Computer scientists draw trees upside down. The root is the top of the tree, and
the leavesare the numbers at the bottom (0, 1, 2, ..., 7). There is a unique path
from the root of the tree to each leaf. Thus, we can describe each of the eight
possible values using the answers to the questions down the tree. For example,
if the answers are @No°% 2Na®, and @No°% we reach the leaf 0; if the answers are
aYes® aN0° 2Yes? we reach the leaf 5.

depth

6 1.2. Measuring Computing Power

We can describe any non-negative integer using bits in this way, by just adding
additional levels to the tree. For example, if we wanted to distinguish between
16 possible numbers, we would add a new question, 2lsis >= 87° to the top
of the tree. If the answer is 2No®, we use the tree in Figure 1.1 to distinguish
numbers between 0 and 7. If the answer is 2Yes®, we use a tree similar to the one
in Figure 1.1, but add 8 to each of the numbers in the questions and the leaves.

The depth of atree is the length of the longest path from the root to any leaf. The
example tree has depth three. A binary tree of depth d can distinguish up to 2¢
different values.

Figure 1.1. Using three bits to distinguish eight possible values.

Units of Information. One byte is de®ned as eight bits. Hence, one byte of
information corresponds to eight binary questions, and can distinguish among

28 (256) different values. For larger amounts of information, we use metric pre-
®xes, but instead of scaling by factors of 1000 they scale by factors of 210 (1024).
Hence, one kilobyte is 1024 bytes; one megabyte is 22° (approximately one mil-
lion) bytes; one gigabyte is 239 (approximately one billion) bytes: and one ter-
abyte is 240 (approximately one trillion) bytes.

Exercise 1.1. Draw a binary tree with the minimum possible depth to:

a. Distinguish among the numbers 0,1,2,...,15
b. Distinguish among the 12 months of the year.

Exercise 1.2. How many bits are needed:

a. To uniquely identify any currently living human?

b. To uniquely identify any human who ever lived?

c. Toidentify any location on Earth within one square centimeter?
d. To uniquely identify any atom in the observable universe?

Exercise 1.3. The examples all use binary questions for which there are two pos-
sible answers. Suppose instead of basing our decisions on bits, we based it on
trits where one trit can distinguish between three equally likely values. For each

trit, we can ask a ternary question (a question with three possible answers).

a. How many trits are needed to distinguish among eight possible values? (A
convincing answer would show a ternary tree with the questions and answers

[?] Devise ageneral formulafor converting between bits and trits. How many
trits does it require to describe b bits of information?

The guess-a-number game starts with one player (the chooser) picking a number
between 1 and 100 (inclusive) and secretly writing it down. The other player (the
guesse) attempts to guess the number. After each guess, the chooser responds
with @correct® (the guesser guessed the number and the game is over), 2higher®
(the actual number is higher than the guess), or @ower° (the actual number is
lower than the guess).

a. Explain why the guesser can receive slightly more than one bit of information
for each response.

b. Assuming the chooser picks the number randomly (that is, all values between
1 and 100 are equally likely), what are the best ®rst guesses? Explain why these
guesses are better than any other guess. (Hint: there are two equally good ®rst
guesses.)

c. What is the maximum number of guesses the second player should need to
always ®nd the number?

d. What is the average number of guesses needed (assuming the chooser picks
the number randomly as before)?

e. [?] Suppose instead of picking randomly, the chooser picks the number with
the goal of maximizing the number of guesses the second player will need.
What number should she pick?

f. [?7] How should the guesser adjust her strategy if she knows the chooser is
picking adversarially?

g. [??] What are the best strategies for both players in the adversarial guess-a-
number game where chooser's goal is to pick a starting number that maxi-
mizes the number of guesses the guesser needs, and the guesser's goal is to
guess the number using as few guesses as possible.

The two-player game twenty questions starts with the ®rst player (the answerer)
thinking of an object, and declaring if the object is an animal, vegetable, or min-
eral (meant to include all non-living things). After this, the second player (the
questioner), asks binary questions to try and guess the object the ®rst player
thought of. The ®rst player answers each question 2yes® or 2no® The website
http://www.20g.net/ offers a web-based twenty questions game where a human
acts as the answerer and the computer as the questioner. The game is also sold
as a $10 stand-alone toy (shown in the picture).

: . e . 2
a. How many different objects can be distinguished by a perfect questioner for Imaggfgmc'sl't?nrpe%ek

the standard twenty questions game?
b. What does it mean for the questioner to play perfectly?
c. Try playing the 20Q game at http://www.20g.net. Did it guess your item?

binary number
system

There are only 10
types of people in
the world:

those who under-
stand binary,

and those who dont.
Infamous T-Shirt

countable

[?] How many items do you think 20Q has data for?
g. [??] Speculate on how 20Q could build up its database.

1.2.2 Representing Data

We can use sequences of bits to represent many kinds of data. All we need to do
is think of the right binary questions for which the bits give answers that allow us
to represent each possible value. Next, we provide examples showing how bits
can be used to represent numbers, text, and pictures.

Numbers. In the previous section, we identi®ed a number using a tree where
each node asks a binary question and the branches correspond to the 2Yes® and
aNo° answers. A more compact way of writing down our decisions following the
tree is to use 0 to encode a @No° answer, and 1 to encode a 2Yes® answer and
describe a path to a leaf by a sequence of 0s and 1sbthe 2No° @No®, 2No° path to
Ois encoded as 000, and the 2Yes®, 2No°, @Yes® pathto 5isencoded as 101. Thisis
known as the binary number system . Whereas the decimal number system uses
ten as its base (there are ten decimal digits, and the positional values increase
as powers of ten), the binary system uses two as its base (there are two binary
digits, and the positional values increase as powers of two).

For example, the binary number 10010110 represents the decimal value 150:

Binary: 1 o,o0|j1,0}|1]1)|O0
Value: | 27 [26 | 22 | 22 [28|22 [22 | 20
Decimal Value: | 128 | 64 | 32 | 16 | 8 4 2 1

As in the decimal number system, the value of each binary digit depends on its
position.

By using more bits, we can represent larger numbers. With enough bits, we can
represent any natural number this way. The more bits we have, the larger the set
of possible numbers we can represent. As we saw with the binary decision trees,
n bits can be used to represent 2" different numbers.

Discrete Values. We can use a ®nite sequence of bits to describe any value that
is selected from a countable set of possible values. A set is countable if there is a
way to assign a unique natural number to each element of the set. All ®nite sets
are countable. Some, but not all, in®nite sets are countable. For example, there
appear to be more integers than there are natural numbers since for each natural
number, n, there are two corresponding integers, nand n. But, the integers are
infact countable. We can enumerate the integersas: 0,1, 1,2, 2,3, 3,4, 4,...
and assign a unigue natural number to each integer in turn.

diagonalization
enumerable. This means we could list all the real numbers in order, so we could
assign a unique integer to each number. For example, considering just the real
numbers between 0 and 1, our enumeration might be:

1 .00000000000000...

2 .25000000000000. ..
3 .33333333333333...
4 .6665666666666 . ..

57236 .141592653589793. ..

Cantor proved by contradiction that there is no way to enumerate all the real
numbers. The trick is to produce a new real number that is not part of the enu-
meration. We can do this by constructing a number whose ®rst digit is different
from the ®rst digit of the ®rst number, whose second digit is different from the
second digit of the second number, etc. For the example enumeration above, we
might choose .1468. ..

The k" digit of the constructed number is different fromthe k' digit of the num-
ber kin the enumeration. Since the constructed number differs in at least one
digit from every enumerated number, it does not match any of the enumerated
numbers exactly. Thus, there is a real number that is not included in the enu-
meration list, and it is impossible to enumerate all the real numbers.

Digital computers 1 operate on inputs that are discrete values. Continuous val-
ues, such as real numbers, can only be approximated by computers. Next, we
consider how two types of data, text and images, can be represented by com-
puters. The ®rst type, text, is discrete and can be represented exactly; images are
continuous, and can only be represented approximately.

Text. The set of all possible sequences of characters is countable. One way to
see this is to observe that we could give each possible text fragment a unique
number, and then use that number to identify the item. For example we could
enumerate all texts alphabetically by length (here, we limit the characters to low-
ercase letters): a, b,c, ..., z,aa,ab,...,azba,... zz aaa, ...

Since we have seen that we can represent all the natural numbers with a se-
guence of bits, so once we have the mapping between each item in the set and
a unique natural number, we can represent all of the items in the set. For the
representation to be useful, though, we usually need a way to construct the cor-
responding number for any item directly.

So, instead of enumerating a mapping between all possible character sequences
and the natural numbers, we need a process for converting any text to a unique
number that represents that text. Suppose we limit our text to characters in
the standard English alphabet. If we include lower-case letters (26), upper-case
letters (26), and punctuation (space, comma, period, newline, semi-colon), we
have 57 different symbols to represent. We can assign a unique number to each

1This is, indeed, part of the de®nition of a digital computer. An analog computer operates on
continuous values. In Chapter 6, we explain more of the inner workings of a computer and why
nearly all computers today are digital. We use computer to mean a digital computer in this book.

pixel

code this as a sequence of bits by using one bit to encode the color of each pixel
(for example, using 1 to represent black, and O to represent white). This image is
16x16, so has 256 pixels total. We could represent the image using a sequence of
256 bits (starting from the top left corner):

0000011111100000
0000100000010000
0011000000001100
0010000000000100

0000011111100000

What about complex pictures that are not divided into discrete squares or a ®xed
number of colors, like Van Gogh's Starry Night ?

abstraction

a way of giving a name to something in a way that allows us to hide unnecessary

Swilliam Wulf and George Fisher, A Makeover for Engineering Education, Issues in Science and
Technology, Spring 2002 (http://www.issues.org/18.3/p_wulf.html).

4For example, the highest strength density material available today, carbon nanotubes, are per-
haps 300 times stronger than the best material available 50 years ago.

