
1
Computing

In their capacity as a tool, computers will be but a ripple on the surface of our
culture. In their capacity as intellectual challenge, they are without precedent in
the cultural history of mankind.

Edsger Dijkstra, 1972 Turing Award Lecture

The ®rst million years of hominid tool development focused on developing tools
to amplify, and later mechanize, our physical abilities to enable us to move faster,
reach higher, and hit harder. We have developed tools that amplify physical force
by the trillions and increase the speeds at which we can travel by the thousands.

Tools that amplify intellectual abilities are much rarer. While some animals have
developed tools to amplify their physical abilities, only humans have developed
tools to substantially amplify our intellectual abilities and it is those advances
that have enabled humans to dominate the planet. The ®rst key intellect am-
pli®er was language. Language provided the ability to transmit our thoughts to
others, as well as to use our own minds more effectively. The next key intellect
ampli®er was writing, which enabled the storage and transmission of thoughts
over time and distance.

Computing is the ultimate mental ampli®erÐcomputers can mechanize any in-
tellectual activity we can imagine. Automatic computing radically changes how
humans solve problems, and even the kinds of problems we can imagine solv-
ing. Computing has changed the world more than any other invention of the
past hundred years, and has come to pervade nearly all human endeavors. Yet,
we are just at the beginning of the computing revolution; today's computing of-
fers just a glimpse of the potential impact of computing.

There are two reasons why everyone should study computing: It may be true that
you have to be able
to read in order to
®ll out forms at the
DMV, but that's not
why we teach
children to read. We
teach them to read
for the higher
purpose of allowing
them access to
beautiful and
meaningful ideas.
Paul Lockhart,
Lockhart's Lament

1. Nearly all of the most exciting and important technologies of today and
tomorrow are driven by computing.

2. Understanding computing illuminates deep insights and questions into
the nature of our minds, our culture, and our universe.

Anyone who has submitted a query to Google, watched Toy Story, had LASIK
eye surgery, made a cell phone call, seen a Cirque Du Soleil show, shopped with a
credit card, or microwaved a pizza should be convinced of the ®rst reason. None
of these would be possible without the tremendous advances in computing over
the past half century.

Although this book will touch on on some exciting applications of computing,
our primary focus is on the second reason, which may seem more surprising.

2 1.1. Processes, Procedures, and Computers

Computing changes how we think about problems and how we understand the
world. The goal of this book is to teach you that new way of thinking.

1.1 Processes, Procedures, and Computers
Computer science is the study of information processes. A process is a sequenceinformation

processes of steps. Each step changes the state of the world in some small way, and the
result of all the steps produces some goal state. For example, baking a cake,
mailing a letter, and planting a tree are all processes. Because they involve phys-
ical things like sugar and dirt, however, they are not pure information processes.
Computer science focuses on processes that involve abstract information rather
than physical things.

The boundaries between the physical world and pure information processes,
however, are often fuzzy. Real computers operate in the physical world: they
obtain input through physical means (e.g., a user pressing a key on a keyboard
that produces an electrical impulse), and produce physical outputs (e.g., an im-
age displayed on a screen). By focusing on abstract information, instead of the
physical ways of representing and manipulating information, we simplify com-
putation to its essence to better enable understanding and reasoning.

A procedure is a description of a process. A simple process can be describedprocedure

just by listing the steps. The list of steps is the procedure; the act of following
them is the process. A procedure that can be followed without any thought is
called a mechanical procedure . An algorithm is a mechanical procedure that isalgorithm

guaranteed to eventually ®nish.

For example, here is a procedure for making coffee, adapted from the actual
directions that come with a major coffeemaker:A mathematician is

a machine for
turning coffee into

theorems.
Attributed to Paul

ErdÈos

1. Lift and open the coffeemaker lid.
2. Place a basket-type ®lter into the ®lter basket.
3. Add the desired amount of coffee and shake to level the coffee.
4. Fill the decanter with cold, fresh water to the desired capacity.
5. Pour the water into the water reservoir.
6. Close the lid.
7. Place the empty decanter on the warming plate.
8. Press the ON button.

Describing processes by just listing steps like this has many limitations. First,
natural languages are very imprecise and ambiguous. Following the steps cor-
rectly requires knowing lots of unstated assumptions. For example, step three
assumes the operator understands the difference between coffee grounds and
®nished coffee, and can infer that this use of ªcoffeeº refers to coffee grounds
since the end goal of this process is to make drinkable coffee. Other steps as-
sume the coffeemaker is plugged in and sitting on a ¯at surface.If you steal property,

you must report its
fair market value in
your income in the

year you steal it
unless in the same

year, you return it to
its rightful owner.

IRS Publication, Your
Federal Income Tax

One could, of course, add lots more details to our procedure and make the lan-
guage more precise than this. Even when a lot of effort is put into writing pre-
cisely and clearly, however, natural languages such as English are inherently am-
biguous. This is why the United States tax code is 3.4 million words long, but
lawyers can still spend years arguing over what it really means.

Another problem with this way of describing a procedure is that the size of the

Chapter 1. Computing 3

description is proportional to the number of steps in the process. This is ®ne
for simple processes that can be executed by humans in a reasonable amount
of time, but the processes we want to execute on computers involve trillions of
steps. This means we need more ef®cient ways to describe them than just listing
each step one-by-one. The languages we use to program computers provide
ways to de®ne long and complex processes with short procedures.

To program computers, we need tools that allow us to describe processes pre-
cisely and succinctly. Since the procedures are carried out by a machine, every
step needs to be described; we cannot rely on the operator having ªcommon
senseº (for example, to know how to ®ll the coffeemaker with water without ex-
plaining that water comes from a faucet, and how to turn the faucet on). Instead,
we need mechanical procedures that can be followed without any thinking.

A computer is a machine that can: computer

1. Accept input. Input could be entered by a human typing at a keyboard,
received over a network, or provided automatically by sensors attached to
the computer.

2. Execute a mechanical procedure, that is, a procedure where each step can
be executed without any thought.

3. Produce output. Output could be data displayed to a human, but it could
also be anything that effects the world outside the computer such as elec-
trical signals that control how a device operates.

Computers exist in a wide range of forms, and thousands of computers are hid-
den in devices we use everyday but don't think of as computers such as cars,
phones, TVs, microwave ovens, and access cards. Our primary focus is on uni-
versal computers, which are computers that can perform all possible mechan- universal

computersical computations on discrete inputs except for practical limits on space and
time. The next section explains what it discrete inputs means; Chapters 6 and 12
explore more deeply what it means for a computer to be universal.

1.2 Measuring Computing Power
For physical machines, we can compare the power of different machines by
measuring the amount of mechanical work they can perform within a given
amount of time. This power can be captured with units like horsepower and
watt . Physical power is not a very useful measure of computing power, though,
since the amount of computing achieved for the same amount of energy varies
greatly. Energy is consumed when a computer operates, but consuming energy
is not the purpose of using a computer.

Two properties that measure the power of a computing machine are:

1. How much information it can process?
2. How fast can it process?

We defer considering the second property until Part II, but consider the ®rst
question here.

1.2.1 Information
Informally, we use information to mean knowledge. But to understand informa- information

tion quantitatively, as something we can measure, we need a more precise way
to think about information.

4 1.2. Measuring Computing Power

The way computer scientists measure information is based on how what is known
changes as a result of obtaining the information. The primary unit of informa-
tion is a bit . One bit of information halves the amount of uncertainty. It is equiv-bit

alent to answering a ªyesº or ªnoº question, where either answer is equally likely
beforehand. Before learning the answer, there were two possibilities; after learn-
ing the answer, there is one.

We call a question with two possible answers a binary question . Since a bit canbinary question

have two possible values, we often represent the values as 0 and 1.

For example, suppose we perform a fair coin toss but do not reveal the result.
Half of the time, the coin will land ªheadsº, and the other half of the time the
coin will land ªtailsº. Without knowing any more information, our chances of
guessing the correct answer are 1

2. One bit of information would be enough to
convey either ªheadsº or ªtailsº; we can use 0 to represent ªheadsº and 1 to rep-
resent ªtailsº. So, the amount of information in a coin toss is one bit.

Similarly, one bit can distinguish between the values 0 and 1:

Example 1.1: Dice

How many bits of information are there in the outcome of tossing a six-sided
die?

There are six equally likely possible outcomes, so without any more information
we have a one in six chance of guessing the correct value. One bit is not enough
to identify the actual number, since one bit can only distinguish between two
values. We could use ®ve binary questions like this:

This is quite inef®cient, though, since we need up to ®ve questions to identify
the value (and on average, expect to need 31

3 questions). Can we identify the
value with fewer than 5 questions?

Chapter 1. Computing 5

Our goal is to identify questions where the ªyesº and ªnoº answers are equally
likelyÐthat way, each answer provides the most information possible. This is
not the case if we start with, ªIs the value 6?º, since that answer is expected to be
ªyesº only one time in six. Instead, we should start with a question like, ªIs the
value at least 4?º. Here, we expect the answer to be ªyesº one half of the time,
and the ªyesº and ªnoº answers are equally likely. If the answer is ªyesº, we know
the result is 4, 5, or 6. With two more bits, we can distinguish between these
three values (note that two bits is actually enough to distinguish among four
different values, so some information is wasted here). Similarly, if the answer
to the ®rst question is no, we know the result is 1, 2, or 3. We need two more
bits to distinguish which of the three values it is. Thus, with three bits, we can
distinguish all six possible outcomes.

Three bits can convey more information that just six possible outcomes, how-
ever. In the binary question tree, there are some questions where the answer
is not equally likely to be ªyesº and ªnoº (for example, we expect the answer to
ªIs the value 3?º to be ªyesº only one out of three times). Hence, we are not
obtaining a full bit of information with each question.

Each bit doubles the number of possibilities we can distinguish, so with three
bits we can distinguish between 2 � 2 � 2 = 8 possibilities. In general, with n bits,
we can distinguish between 2n possibilities. Conversely, distinguishing among k
possible values requires log2 k bits. The logarithm is de®ned such that if a = bc logarithm

then logb a = c. Since each bit has two possibilities, we use the logarithm base
2 to determine the number of bits needed to distinguish among a set of distinct
possibilities. For our six-sided die, log2 6 � 2.58, so we need approximately 2.58
binary questions. But, questions are discrete: we can't ask 0.58of a question, so
we need to use three binary questions.

Trees. Figure 1.1 depicts a structure of binary questions for distinguishing
among eight values. We call this structure a binary tree . We will see many useful binary tree

applications of tree-like structures in this book.

Computer scientists draw trees upside down. The root is the top of the tree, and
the leavesare the numbers at the bottom (0, 1, 2, . . ., 7). There is a unique path
from the root of the tree to each leaf. Thus, we can describe each of the eight
possible values using the answers to the questions down the tree. For example,
if the answers are ªNoº, ªNoº, and ªNoº, we reach the leaf 0; if the answers are
ªYesº, ªNoº, ªYesº, we reach the leaf 5.

6 1.2. Measuring Computing Power

We can describe any non-negative integer using bits in this way, by just adding
additional levels to the tree. For example, if we wanted to distinguish between
16 possible numbers, we would add a new question, ªIs is > = 8?º to the top
of the tree. If the answer is ªNoº, we use the tree in Figure 1.1 to distinguish
numbers between 0 and 7. If the answer is ªYesº, we use a tree similar to the one
in Figure 1.1, but add 8 to each of the numbers in the questions and the leaves.

The depth of a tree is the length of the longest path from the root to any leaf. Thedepth

example tree has depth three. A binary tree of depth d can distinguish up to 2d

different values.

Figure 1.1. Using three bits to distinguish eight possible values.

Units of Information. One byte is de®ned as eight bits. Hence, one byte of
information corresponds to eight binary questions, and can distinguish among
28 (256) different values. For larger amounts of information, we use metric pre-
®xes, but instead of scaling by factors of 1000 they scale by factors of 210 (1024).
Hence, one kilobyte is 1024 bytes; one megabyte is 220 (approximately one mil-
lion) bytes; one gigabyte is 230 (approximately one billion) bytes; and one ter-
abyte is 240 (approximately one trillion) bytes.

Exercise 1.1. Draw a binary tree with the minimum possible depth to:

a. Distinguish among the numbers 0, 1, 2, . . . , 15.

b. Distinguish among the 12 months of the year.

Exercise 1.2. How many bits are needed:

a. To uniquely identify any currently living human?

b. To uniquely identify any human who ever lived?

c. To identify any location on Earth within one square centimeter?

d. To uniquely identify any atom in the observable universe?

Exercise 1.3. The examples all use binary questions for which there are two pos-
sible answers. Suppose instead of basing our decisions on bits, we based it on
trits where one trit can distinguish between three equally likely values. For each
trit, we can ask a ternary question (a question with three possible answers).
a. How many trits are needed to distinguish among eight possible values? (A

convincing answer would show a ternary tree with the questions and answers

Chapter 1. Computing 7

for each node, and argue why it is not possible to distinguish all the values
with a tree of lesser depth.)

b. [?] Devise a general formula for converting between bits and trits. How many
trits does it require to describe b bits of information?

Exploration 1.1: Guessing Numbers

The guess-a-number game starts with one player (the chooser) picking a number
between 1 and 100 (inclusive) and secretly writing it down. The other player (the
guesser) attempts to guess the number. After each guess, the chooser responds
with ªcorrectº (the guesser guessed the number and the game is over), ªhigherº
(the actual number is higher than the guess), or ªlowerº (the actual number is
lower than the guess).

a. Explain why the guesser can receive slightly more than one bit of information
for each response.

b. Assuming the chooser picks the number randomly (that is, all values between
1 and 100 are equally likely), what are the best ®rst guesses? Explain why these
guesses are better than any other guess. (Hint: there are two equally good ®rst
guesses.)

c. What is the maximum number of guesses the second player should need to
always ®nd the number?

d. What is the average number of guesses needed (assuming the chooser picks
the number randomly as before)?

e. [?] Suppose instead of picking randomly, the chooser picks the number with
the goal of maximizing the number of guesses the second player will need.
What number should she pick?

f. [??] How should the guesser adjust her strategy if she knows the chooser is
picking adversarially?

g. [??] What are the best strategies for both players in the adversarial guess-a-
number game where chooser's goal is to pick a starting number that maxi-
mizes the number of guesses the guesser needs, and the guesser's goal is to
guess the number using as few guesses as possible.

Exploration 1.2: Twenty Questions

The two-player game twenty questions starts with the ®rst player (the answerer)
thinking of an object, and declaring if the object is an animal, vegetable, or min-
eral (meant to include all non-living things). After this, the second player (the
questioner), asks binary questions to try and guess the object the ®rst player
thought of. The ®rst player answers each question ªyesº or ªnoº. The website
http://www.20q.net/ offers a web-based twenty questions game where a human
acts as the answerer and the computer as the questioner. The game is also sold
as a $10 stand-alone toy (shown in the picture).

20Q Game
Image from ThinkGeeka. How many different objects can be distinguished by a perfect questioner for

the standard twenty questions game?

b. What does it mean for the questioner to play perfectly?

c. Try playing the 20Q game at http://www.20q.net. Did it guess your item?

8 1.2. Measuring Computing Power

d. Instead of just ªyesº and ªnoº, the 20Q game offers four different answers:
ªYesº, ªNoº, ªSometimesº, and ªUnknownº. (The website version of the game
also has ªProbablyº, ªIrrelevantº, and ªDoubtfulº.) If all four answers were
equally likely (and meaningful), how many items could be distinguished in
20 questions?

e. For an Animal, the ®rst question 20Q sometimes asks is ªDoes it jump?º (20Q
randomly selected from a few different ®rst questions). Is this a good ®rst
question?

f. [?] How many items do you think 20Q has data for?

g. [??] Speculate on how 20Q could build up its database.

1.2.2 Representing Data
We can use sequences of bits to represent many kinds of data. All we need to do
is think of the right binary questions for which the bits give answers that allow us
to represent each possible value. Next, we provide examples showing how bits
can be used to represent numbers, text, and pictures.

Numbers. In the previous section, we identi®ed a number using a tree where
each node asks a binary question and the branches correspond to the ªYesº and
ªNoº answers. A more compact way of writing down our decisions following the
tree is to use 0 to encode a ªNoº answer, and 1 to encode a ªYesº answer and
describe a path to a leaf by a sequence of 0s and 1sÐthe ªNoº, ªNoº, ªNoº path to
0 is encoded as 000, and the ªYesº, ªNoº, ªYesº path to 5 is encoded as 101. This is
known as the binary number system . Whereas the decimal number system usesbinary number

system ten as its base (there are ten decimal digits, and the positional values increase
as powers of ten), the binary system uses two as its base (there are two binary
digits, and the positional values increase as powers of two).There are only 10

types of people in
the world:

those who under-
stand binary,

and those who don't.
Infamous T-Shirt

For example, the binary number 10010110 represents the decimal value 150:

Binary: 1 0 0 1 0 1 1 0
Value: 27 26 25 24 23 22 21 20

Decimal Value: 128 64 32 16 8 4 2 1

As in the decimal number system, the value of each binary digit depends on its
position.

By using more bits, we can represent larger numbers. With enough bits, we can
represent any natural number this way. The more bits we have, the larger the set
of possible numbers we can represent. As we saw with the binary decision trees,
n bits can be used to represent 2n different numbers.

Discrete Values. We can use a ®nite sequence of bits to describe any value that
is selected from a countable set of possible values. A set is countable if there is acountable

way to assign a unique natural number to each element of the set. All ®nite sets
are countable. Some, but not all, in®nite sets are countable. For example, there
appear to be more integers than there are natural numbers since for each natural
number, n, there are two corresponding integers, n and n. But, the integers are
in fact countable. We can enumerate the integers as: 0, 1, 1, 2, 2, 3, 3, 4, 4, . . .
and assign a unique natural number to each integer in turn.

Chapter 1. Computing 9

Other sets, such as the real numbers, are uncountable. Georg Cantor proved
this using a technique known as diagonalization . Suppose the real numbers are diagonalization

enumerable. This means we could list all the real numbers in order, so we could
assign a unique integer to each number. For example, considering just the real
numbers between 0 and 1, our enumeration might be:

1 .00000000000000 . . .
2 .25000000000000 . . .
3 .33333333333333 . . .
4 .6666666666666 . . .

� � � � � �
57236 .141592653589793 . . .

� � � � � �

Cantor proved by contradiction that there is no way to enumerate all the real
numbers. The trick is to produce a new real number that is not part of the enu-
meration. We can do this by constructing a number whose ®rst digit is different
from the ®rst digit of the ®rst number, whose second digit is different from the
second digit of the second number, etc. For the example enumeration above, we
might choose .1468

The kth digit of the constructed number is different from the kth digit of the num-
ber k in the enumeration. Since the constructed number differs in at least one
digit from every enumerated number, it does not match any of the enumerated
numbers exactly. Thus, there is a real number that is not included in the enu-
meration list, and it is impossible to enumerate all the real numbers.

Digital computers 1 operate on inputs that are discrete values. Continuous val-
ues, such as real numbers, can only be approximated by computers. Next, we
consider how two types of data, text and images, can be represented by com-
puters. The ®rst type, text, is discrete and can be represented exactly; images are
continuous, and can only be represented approximately.

Text. The set of all possible sequences of characters is countable. One way to
see this is to observe that we could give each possible text fragment a unique
number, and then use that number to identify the item. For example we could
enumerate all texts alphabetically by length (here, we limit the characters to low-
ercase letters): a, b, c, . . ., z, aa, ab, . . ., az, ba, . . ., zz, aaa, . . .

Since we have seen that we can represent all the natural numbers with a se-
quence of bits, so once we have the mapping between each item in the set and
a unique natural number, we can represent all of the items in the set. For the
representation to be useful, though, we usually need a way to construct the cor-
responding number for any item directly.

So, instead of enumerating a mapping between all possible character sequences
and the natural numbers, we need a process for converting any text to a unique
number that represents that text. Suppose we limit our text to characters in
the standard English alphabet. If we include lower-case letters (26), upper-case
letters (26), and punctuation (space, comma, period, newline, semi-colon), we
have 57 different symbols to represent. We can assign a unique number to each

1This is, indeed, part of the de®nition of a digital computer. An analog computer operates on
continuous values. In Chapter 6, we explain more of the inner workings of a computer and why
nearly all computers today are digital. We use computer to mean a digital computer in this book.

10 1.2. Measuring Computing Power

symbol, and encode the corresponding number with six bits (this leaves seven
values unused since six bits can distinguish 64 values). For example, we could
encode using the mapping shown in Table 1.1. The ®rst bit answers the ques-
tion: ªIs it an uppercase letter after F or a special character?º. When the ®rst bit
is 0, the second bit answers the question: ªIs it after p?º.

a 000000
b 000001
c 000010
d 000011

� � � � � �
p 001111
q 010000

� � � � � �
z 011001

A 011010
B 011011
C 011100
� � � � � �
F 011111
G 100000
� � � � � �
Y 110010
Z 110011

space 110100
, 110101
. 110110

newline 110111
; 111000

unused 111001
� � � � � �

unused 111110
unused 111111

Table 1.1. Encoding characters using bits.
This is one way to encode the alphabet, but not the one typically used by computers.
One commonly used encoding known as ASCII (the American Standard Code for Infor-
mation Interchange) uses seven bits so that 128 different symbols can be encoded. The
extra symbols are used to encode more special characters.

Once we have a way of mapping each individual letter to a ®xed-length bit se-
quence, we could write down any sequence of letters by just concatenating the
bits encoding each letter. So, the text CS is encoded as 011100 101100. We could
write down text of length n that is written in the 57-symbol alphabet using this
encoding using 6n bits. To convert the number back into text, just invert the
mapping by replacing each group of six bits with the corresponding letter.

Rich Data. We can also use bit sequences to represent complex data like pic-
tures, movies, and audio recordings. First, consider a simple black and white
picture:

Since the picture is divided into discrete squares known as pixel s, we could en-pixel

code this as a sequence of bits by using one bit to encode the color of each pixel
(for example, using 1 to represent black, and 0 to represent white). This image is
16x16, so has 256 pixels total. We could represent the image using a sequence of
256 bits (starting from the top left corner):

0000011111100000
0000100000010000
0011000000001100
0010000000000100

� � �
0000011111100000

What about complex pictures that are not divided into discrete squares or a ®xed
number of colors, like Van Gogh's Starry Night ?

Chapter 1. Computing 11

Different wavelengths of electromagnetic radiation have different colors. For
example, light with wavelengths between 625 and 730 nanometers appears red.
But, each wavelength of light has a slightly different color; for example, light with
wavelength 650 nanometers would be a different color (albeit imperceptible to
humans) from light of wavelength 650.0000001nanometers. There are arguably
in®nitely many different colors, corresponding to different wavelengths of visi-
ble light. 2 Since the colors are continuous and not discrete, there is no way to
map each color to a unique, ®nite bit sequence.

On the other hand, the human eye and brain have limits. We cannot actu-
ally perceive in®nitely many different colors; at some point the wavelengths
are close enough that we cannot distinguish them. Ability to distinguish colors
varies, but most humans can perceive only a few million different colors. The set
of colors that can be distinguished by a typical human is ®nite; any ®nite set is
countable, so we can map each distinguishable color to a unique bit sequence.

A common way to represent color is to break it into its three primary compo-
nents (red, green, and blue), and record the intensity of each component. The
more bits available to represent a color, the more different colors that can be
represented.

Thus, we can represent a picture by recording the approximate color at each
point. If space in the universe is continuous, there are in®nitely many points.
But, as with color, once the points get smaller than a certain size they are im-
perceptible. We can approximate the picture by dividing the canvas into small
regions and sampling the average color of each region. The smaller the sample
regions, the more bits we will have and the more detail that will be visible in the
image. With enough bits to represent color, and enough sample points, we can
represent any image as a sequence of bits.

Summary. We can use sequences of bits to represent any natural number ex-
actly, and hence, represent any member of a countable set using a sequence of

2Whether there are actually in®nitely many different colors comes down to the question of
whether the space-time of the universe is continuous or discrete. Certainly in our common per-
ception it seems to be continuousÐwe can imagine dividing any length into two shorter lengths. In
reality, this may not be the case at extremely tiny scales. It is not known if time can continue to be
subdivided below 10 40 of a second.

12 1.2. Measuring Computing Power

bits. The more bits we use the more different values that can be represented;
with n bits we can represent 2n different values.

We can also use sequences of bits to represent rich data like images, audio, and
video. Since the world we are trying to represent is continuous there are in-
®nitely many possible values, and we cannot represent these objects exactly
with any ®nite sequence of bits. However, since human perception is limited,
with enough bits we can represent any of these adequately well. Finding ways
to represent data that are both ef®cient and easy to manipulate and interpret is
a constant challenge in computing. Manipulating sequences of bits is awkward,
so we need ways of thinking about bit-level representations of data at higher
levels of abstraction. Chapter 5 focuses on ways to manage complex data.

1.2.3 Growth of Computing Power
The number of bits a computer can store gives an upper limit on the amount of
information it can process. Looking at the number of bits different computers
can store over time gives us a rough indication of how computing power has
increased. Here, we consider two machines: the Apollo Guidance Computer
and a modern laptop.

The Apollo Guidance Computer was developed in the early 1960s to control the
¯ight systems of the Apollo spacecraft. It might be considered the ®rst personal
computer , since it was designed to be used in real-time by a single operator (an
astronaut in the Apollo capsule). Most earlier computers required a full room,
and were far too expensive to be devoted to a single user; instead, they pro-
cessed jobs submitted by many users in turn. Since the Apollo Guidance Com-
puter was designed to ®t in the Apollo capsule, it needed to be small and light.
Its volume was about a cubic foot and it weighed 70 pounds. The AGC was

AGC User Interface the ®rst computer built using integrated circuits, miniature electronic circuits
that can perform simple logical operations such as performing the logical and
of two values. The AGC used about 4000 integrated circuits, each one being able
to perform a single logical operation and costing $1000. The AGC consumed a
signi®cant fraction of all integrated circuits produced in the mid-1960s, and the
project spurred the growth of the integrated circuit industry.

The AGC had 552 960 bits of memory (of which only 61 440 bits were modi®able,
the rest were ®xed). The smallest USB ¯ash memory you can buy today (from
SanDisk in December 2008) is the 1 gigabyte Cruzer for $9.99; 1 gigabyte (GB)
is 230 bytes or approximately 8.6 billion bits, about 140 000 times the amount of
memory in the AGC (and all of the Cruzer memory is modi®able). A typical low-
end laptop today has 2 gigabytes of RAM (fast memory close to the processor
that loses its state when the machine is turned off) and 250 gigabytes of hard
disk memory (slow memory that persists when the machine is turned off); for
under $600 today we get a computer with over 4 million times the amount of
memory the AGC had.Moore's law is a

violation of
Murphy's law.

Everything gets
better and better.

Gordon Moore

Improving by a factor of 4 million corresponds to doubling just over 22 times.
The amount of computing power approximately doubled every two years be-
tween the AGC in the early 1960s and a modern laptop today (2009). This prop-
erty of exponential improvement in computing power is known as Moore's Law.
Gordon Moore, a co-founder of Intel, observed in 1965 than the number of com-
ponents that can be built in integrated circuits for the same cost was approxi-

Chapter 1. Computing 13

mately doubling every year (revisions to Moore's observation have put the dou-
bling rate at approximately 18 months instead of one year). This progress has
been driven by the growth of the computing industry, increasing the resources
available for designing integrated circuits. Another driver is that today's tech-
nology is used to design the next technology generation. Improvement in com-
puting power has followed this exponential growth remarkably closely over the
past 40 years, although there is no law that this growth must continue forever.

Although our comparison between the AGC and a modern laptop shows an im-
pressive factor of 4 million improvement, it is much slower than Moore's law
would suggest. Instead of 22 doublings in power since 1963, there should have
been 30 doublings (using the 18 month doubling rate). This would produce an
improvement of one billion times instead of just 4 million. The reason is our
comparison is very unequal relative to cost: the AGC was the world's most ex-
pensive small computer of its time, re¯ecting many millions of dollars of gov-
ernment funding. Computing power available for similar funding today is well
over a billion times more powerful than the AGC.

1.3 Science, Engineering, and Liberal Art
Much ink and many bits have been spent debating whether computer science
is an art, an engineering discipline, or a science. The confusion stems from the
nature of computing as a new ®eld that does not ®t well into existing silos. In
fact, computer science ®ts into all three kingdoms, and it is useful to approach
computing from all three perspectives.

Science. Traditional science is about understanding nature through observa-
tion. The goal of science is to develop general and predictive theories that allow
us to understand aspects of nature deeply enough to make accurate quantitative
predications. For example, Newton's law of universal gravitation makes predic-
tions about how masses will move. The more general a theory is the better. A key,
as yet unachieved, goal of science is to ®nd a universal law that can describe all
physical behavior at scales from the smallest subparticle to the entire universe,
and all the bosons, muons, dark matter, black holes, and galaxies in between.
Science deals with real things (like bowling balls, planets, and electrons) and at-
tempts to make progress toward theories that predict increasingly precisely how
these real things will behave in different situations.

Computer science focuses on arti®cial things like numbers, graphs, functions,
and lists. Instead of dealing with physical things in the real world, computer sci-
ence concerns abstract things in a virtual world. The numbers we use in compu-
tations often represent properties of physical things in the real world, and with
enough bits we can model real things with arbitrary precision. But, since our fo-
cus is on abstract, arti®cial things rather than physical things, computer science
is not a traditional natural science but a more abstract ®eld like mathematics.
Like mathematics, computing is an essential tool for modern science, but when
we study computing on arti®cial things it is not a natural science itself.

In a deeper sense, computing pervades all of nature. A long term goal of com-
puter science is to develop theories that explain how nature computes. One ex-
ample of computing in nature comes from biology. Complex life exists because
nature can perform sophisticated computing. People sometimes describe DNA
as a ªblueprintº, but it is really much better thought of as a program. Whereas

14 1.3. Science, Engineering, and Liberal Art

a blueprint describes what a building should be when it is ®nished, giving the
dimensions of walls and how they ®t together, the DNA of an organism encodes
a process for growing that organism. A human genome is not a blueprint that
describes the body plan of a human, it is a program that turns a single cell into
a complex human given the appropriate environment. The process of evolution
(which itself is an information process) produces new programs, and hence new
species, through the process of natural selection on mutated DNA sequences.
Understanding how both these processes work is one of the most interesting
and important open scienti®c questions, and it involves deep questions in com-
puter science, as well as biology, chemistry, and physics.

The questions we consider in this book focus on the question of what can and
cannot be computed. This is both a theoretical question (what can be computed
by a given theoretical model of a computer) and a pragmatic one (what can be
computed by physical machines we can build today, as well as by anything pos-
sible in our universe).Scientists study the

world as it is;
engineers create the

world that never
has been.

Theodore von K Âarm Âan

Engineering. Engineering is about making useful things. Engineering is of-
ten distinguished from crafts in that engineers use scienti®c principles to create
their designs, and focus on designing under practical constraints. As William
Wulf and George Fisher put it: 3

Whereas science is analytic in that it strives to understand nature, or what
is, engineering is synthetic in that it strives to create. Our own favorite de-
scription of what engineers do is ªdesign under constraintº. Engineering is
creativity constrained by nature, by cost, by concerns of safety, environmen-
tal impact, ergonomics, reliability, manufacturability, maintainability±
the whole long list of such ªilitiesº. To be sure, the realities of nature is one
of the constraint sets we work under, but it is far from the only one, it is
seldom the hardest one, and almost never the limiting one.

Computer scientists do not typically face the natural constraints faced by civil
and mechanical engineersÐcomputer programs are massless and not exposed
to the weather, so programmers do not face the kinds of physical constraints like
gravity that impose limits on bridge designers. As we saw from the Apollo Guid-
ance Computer comparison, practical constraints on computing power change
rapidly Ð the one billion times improvement in computing power is unlike any
change in physical materials 4. Although we may need to worry about manufac-
turability and maintainability of storage media (such as the disk we use to store
a program), our focus as computer scientists is on the abstract bits themselves,
not how they are stored.

Computer scientists, however, do face many constraints. A primary constraint
is the capacity of the human mindÐthere is a limit to how much information a
human can keep in mind at one time. As computing systems get more complex,
there is no way for a human to understand the entire system at once. To build
complex systems, we need techniques for managing complexity. The primary
tool computer scientists use to manage complexity is abstraction . Abstraction isabstraction

a way of giving a name to something in a way that allows us to hide unnecessary

3William Wulf and George Fisher, A Makeover for Engineering Education, Issues in Science and
Technology, Spring 2002 (http://www.issues.org/18.3/p wulf.html).

4For example, the highest strength density material available today, carbon nanotubes, are per-
haps 300 times stronger than the best material available 50 years ago.

Chapter 1. Computing 15

details. By using carefully designed abstractions, we can construct complex sys-
tems with reliable properties while limiting the amount of information a human
designer needs to keep in mind at any one time.

Liberal Art. The notion of the liberal arts emerged during the middle ages to I must study politics
and war that my
sons may have
liberty to study
mathematics and
philosophy. My sons
ought to study
mathematics and
philosophy,
geography, natural
history, naval
architecture,
navigation,
commerce, and
agriculture, in order
to give their
children a right to
study painting,
poetry, music,
architecture,
statuary, tapestry,
and porcelain.
John Adams, 1780

distinguish education for the purpose of expanding the intellects of free peo-
ple from the illiberal arts such as medicine and carpentry that were pursued for
economic purposes. The liberal arts were intended for people who did not need
to learn an art to make a living, but instead had the luxury to pursue purely in-
tellectual activities for their own sake. The traditional seven liberal arts started
with the Trivium (three roads), focused on language: 5

· Grammar Ð ªthe art of inventing symbols and combining them to express
thoughtº

· Rhetoric Ð ªthe art of communicating thought from one mind to another,
the adaptation of language to circumstanceº

· Logic Ð ªthe art of thinkingº

The Trivium was followed by the Quadrivium , focused on numbers:

· Arithmetic Ð ªtheory of numberº
· Geometry Ð ªtheory of spaceº
· Music Ð ªapplication of the theory of numberº
· Astronomy Ð ªapplication of the theory of spaceº

All of these have strong connections to computer science, and we will touch on
each of them to some degree in this book.

Language is essential to computing since we use the tools of language to de-
scribe information processes. The next chapter discusses the structure of lan-
guage and throughout this book we consider how to ef®ciently use and combine
symbols to express meanings. Rhetoric encompasses communicating thoughts
between minds. In computing, we are not typically communicating directly be-
tween minds, but we see many forms of communication between entities: in-
terfaces between components of a program, as well as protocols used to enable
multiple computing systems to communicate (for example, the HTTP protocol
de®nes how a web browser and web server interact), and communication be-
tween computer programs and human users. The primary tool for understand-
ing what computer programs mean, and hence, for constructing programs with
particular meanings, is logic. Hence, the traditional trivium liberal arts of lan-
guage and logic permeate computer science.

The connections between computing and the quadrivium arts are also perva-
sive. We have already seen how computers use sequences of bits to represent
numbers. Chapter 6 examines how machines can perform basic arithmetic op-
erations. Geometry is essential for computer graphics, and graph theory is also
important for computer networking. The harmonic structures in music have
strong connections to the recursive de®nitions introduced in Chapter 4 and re-
curring throughout this book. 6 Unlike the other six liberal arts, astronomy is not
directly connected to computing, but computing is an essential tool for doing
modern astronomy.

5 The quotes de®ning each liberal art are from Miriam Joseph (edited by Marguerite McGlinn),
The Trivium: The Liberal Arts of Logic, Grammar, and Rhetoric , Paul Dry Books, 2002.

6See Douglas Hofstadter's GÈodel, Escher, Bachfor lots of interesting examples of connections be-
tween computing and music.

16 1.4. Summary and Roadmap

Although learning about computing quali®es as an illiberal art (that is, it can
have substantial economic bene®ts for those who learn it well), computer sci-
ence also covers at least six of the traditional seven liberal arts.

1.4 Summary and Roadmap
Computer scientists think about problems differently. When confronted with a
problem, a computer scientist does not just attempt to solve it. Instead, com-
puter scientists think about a problem as a mapping between its inputs and de-
sired outputs, develop a systematic sequence of steps for solving the problem
for any possible input, and consider how the number of steps required to solve
the problem scales as the input size increases.

The rest of this book presents a whirlwind introduction to computer science.
We do not cover any topics in great depth, but rather provide a broad picture
of what computer science is, how to think like a computer scientist, and how to
solve problems.

Part I: De®ning Procedures. Part I focuses on how to de®ne procedures that
perform desired computations. The nature of the computer forces solutions to
be expressed precisely in a language the computer can interpret. This means a
computer scientist needs to understand how languages work and exactly what
phrases in a language mean. Natural languages like English are too complex and
inexact for this, so we need to invent and use new languages that are simpler,
more structured, and less ambiguously de®ned than natural languages. Chap-
ter 2 focuses on language, and during the course of this book we will use lan-
guage to precisely describe processes and languages are interpreted.

The computer frees humans from having to actually carry out the steps needed
to solve the problem. Without complaint, boredom, or rebellion, it dutifully exe-
cutes the exact steps the program speci®es. And it executes them at a remarkable
rate Ð billions of simple steps in each second on a typical laptop. This changes
not just the time it takes to solve a problem, but qualitatively changes the kinds
of problems we can solve, and the kinds of solutions worth considering. Prob-
lems like sequencing the human genome, simulating the global climate, and
making a photomosaic not only could not have been solved without comput-
ing, but perhaps could not have even been envisioned. Chapter 3 introduces
programming, and Chapter 4 develops some techniques for constructing pro-
grams that solve problems. To represent more interesting problems, we need
ways to manage more complex data. Chapter 5 concludes Part I by exploring
ways to represent data and de®ne procedures that operate on complex data.

Part II: Analyzing Procedures. Part II considers the problem of estimating the
cost required to execute a procedure. This requires understanding how ma-
chines can compute (Chapter 6), and mathematical tools for reasoning about
how cost grows with the size of the inputs to a procedure (Chapter 7). Chapter 8
provides some extended examples that apply these techniques.

Part III: Improving Expressiveness. The techniques from Part I and II are suf-
®cient for describing all computations. Our goal, however, it to be able to de®ne
concise, elegant, and ef®cient procedures for performing desired computations.
Part III presents techniques that enable more expressive procedures.

Chapter 1. Computing 17

Part IV: The Limits of Computing. We hope that by the end of Part III, readers
will feel con®dent that they could program a computer to do just about any-
thing. In Part IV, we consider the question of what can and cannot be done by a
mechanical computer. A large class of interesting problems cannot be solved by
any computer, even with unlimited time and space.

Themes. Much of the book will revolve around three very powerful ideas that
are prevalent throughout computing:

Recursive de®nitions. A recursive de®nition de®ne a thing in terms of smaller
instances of itself. A simple example is de®ning your ancestors as (1) your par-
ents, and (2) the ancestors of your ancestors. Recursive de®nitions can de®ne
an in®nitely large set with a small description. They also provide a powerful
technique for solving problems by breaking a problem into solving a simple in-
stance of the problem and showing how to solve a larger instance of the problem
by using a solution to a smaller instance. We use recursive de®nitions to de®ne
in®nite languages in Chapter 2, to solve problems in Chapter 4, to build complex
data structures in Chapter 5. In later chapters, we see how language interpreters
themselves can be de®ned recursively.

Universality. Computers are distinguished from other machines in that their be-
havior can be changed by a program. Procedures themselves can be described
using just bits, so we can write procedures that process procedures as inputs and
that generate procedures as outputs. Considering procedures as data is both a
powerful problem solving tool, and a useful way of thinking about the power
and fundamental limits of computing. We introduce the use of procedures as
inputs and outputs in Chapter 4, see how generated procedures can be pack-
aged with state to model objects in Chapter 10. One of the most fundamental
results in computing is that any machine that can perform a few simple opera-
tions is powerful enough to perform any computation, and in this deep sense,
all mechanical computers are equivalent. We introduce a model of computation
in Chapter 6, and reason about the limits of computation in Chapter 12.

Abstraction. Abstraction is a way of hiding details by giving things names. We use
abstraction to manage complexity. Good abstractions hide unnecessary details
so they can be used to build complex systems without needing to understand
all the details of the abstraction at once. We introduce procedural abstraction
in Chapter 4, data abstraction in Chapter 5, abstraction using objects in Chap-
ter 10, and many other examples of abstraction throughout this book.

Throughout this book, these three themes will recur recursively, universally, and
abstractly as we explore the art and science of how to instruct computing ma-
chines to perform useful tasks, reason about the resources needed to execute a
particular procedure, and understand the fundamental and practical limits on
what computers can do.

