Sorting and Searching

If you keep proving stuff that others have done, getting confidence, increasing
the complexities of your solutions—for the fun of it—then one day you'll turn
around and discover that nobody actually did that one! And that’s the way to
become a computer scientist.

Richard Feynman, Lectures on Computation

In this chapter, we conclude the first half of this book by presenting two
extended examples that use the programming techniques from Chapters 2-
5 and the analysis ideas from Chapters 6-8 to solve some interesting and
important problems. First, we consider the problem of arranging a list in
order. Next, we consider the problem of finding an item that satisfies some

property.

These examples involve some quite challenging problems and incorporate
many of the ideas we have seen up to this point in the book. Readers who
can understand them well are well on their way to thinking like computer
scientists!

9.1 Sorting

The sorting problem takes two inputs: a list of elements, and a comparison
procedure. The result is a list containing same elements as the input list
ordered according to the comparison procedure. For example, if we sort a
list of numbers using < as the comparison procedure, the output is the list
of numbers sorted in order from least to greatest.

Sorting is one of the most widely studied problems in computing, and
many different sorting algorithms have been developed and analyzed. In
this section, we explore a few sorting procedures. Curious readers should
attempt to develop their own sorting procedures before continuing further.
It may be illuminating to try sorting some items by hand an think carefully
about how you do it and how much work it is. For example, take a shuffled
deck of cards and arrange them in sorted order by ranks. Or, try arranging

David Evans, Computing: Explorations in Language, Logic, and Machines, May 15, 2009

transitivity

212 9.1. Sorting

all the students in your class alphabetically by name, or chronologically by
birthday.

9.1.1 Best-First Sort

A simple sorting strategy is to find the best element in the list and put that
at the front. For a given comparison function, the best element is an ele-
ment for which the comparison procedure evaluates to true when applied
to that element and every other element. For example, if the comparison
function is <, the best element is the smallest number in the list. This ele-
ment belongs at the front of the output list.

The notion of the best element in the list for a given comparison function
only makes sense if the comparison function has the property that for any
inputsa, b, and ¢, if (¢f a b) and (cf b c) are both true, the result of (cf a c) must
be true. This property is known as transitivity. The < function is transitive:
a < band b < cimplies a < c for all numbers g, b, and c. If the comparison
function does not have this property, there may be no way to arrange the
elements in a single sorted list, so all of our sorting procedures require that
the procedure passed as the comparison function is transitive.

Once we can find the best element in a given list, we can sort the whole list
by successively finding the best element of the remaining elements until no
more elements remain. To define our best-first sorting procedure, we first
define a procedure for finding the best element in the list, and then define
a procedure for removing an element from a list.

Finding the Best. The best element in the list is either the first element,
or the best element from the rest of the list. Hence, we define list-find-best
recursively. An empty list has no best element, so the base case is for a
list that has one element. When the input list has only one element, then
whatever that element is it is the best element in the singleton list. If the
list has more than one element, the best element is the better of the first
element in the list and the best element of the rest of the list.

To pick the better element from two elements, we define the pick-better pro-
cedure that takes three inputs: a comparison function and two values.

(define (pick-better cf p1 p2) (if (cf p1 p2) p1 p2))

Assuming the procedure passed as cf has constant running time, the run-
ning time of pick-better is constant. For most of our examples, we use the
< procedure as the comparison function. For arbitrary inputs, the running
time of < is not constant since in the worst case performing the comparison
requires examining every digit in the input numbers. But, if the maximum

Chapter 9. Sorting and Searching 213

value of a number in the input list is limited, then we can consider < a con-
stant time procedure since all of the inputs passed to it in this context are
below some fixed size.

Then, we use pick-better to define list-find-best:

(define (list-find-best cf p)
(if (null? (cdr p))
(car p)
(pick-better cf (car p) (list-find-best cf (cdr p)))))

We use n to represent the number of elements in the input list p. An appli-
cation of list-find-best involves n — 1 recursive applications since each one
passes in (cdr p) as the new p operand and the base case stops when the list
has one element left. The running time for each application (excluding the
recursive application) is constant since it involves only applications of the
constant time procedures null?, cdr, and pick-better. So, the total running
time for list-find-best scales linearly with the length of the input list.

Deleting an Element. To implement best first sorting, we need to produce
a list that contains all the elements of the original list except for the best
element, which will be placed at the front of the output list. We define a
procedure, list-delete, that takes as inputs a List and a Value, and produces
a List that contains all the elements of the input list in the original order
except for the first element that is equal to the input value.

(define (list-delete p el)
(if (null? p)
null
(if (equal? (car p) el) ; found match, skip this element

(cdr p)
(cons (car p) (list-delete (cdr p) el)))))

We use the equal? procedure to check if the element matches instead of =,
so the list-delete procedure works on elements that are not just Numbers.
The equal? procedure behaves identically to = when both inputs are Num-
bers, but also works sensibly on many other datatypes including Booleans,
Characters, Pairs, Lists, and Strings. Since we assume the sizes of the in-
puts to equal? are bounded, we can consider equal? to be a constant time
procedure (even though it would not be constant time on arbitrary inputs).

The worst case running time for list-delete occurs when no element in the
list matches the value of el (in the best case, the first element matches and
the running time does not depend on the length of the input list at all). We
use 1 to represent the number of elements in the input list. There can be
up to n recursive applications of list-delete. Each application has constant

214 9.1. Sorting

running time since all of the procedures applied (except the recursive call)
have constant running time. Hence, the total running time for list-delete is
in ©(n) where 7 is the length of the input list.

Sorting. We define list-sort-best-first using list-find-best and list-delete:

(define (list-sort-best-first cf p)
(if (null? p)
null
(cons (list-find-best cf p)
(list-sort-best-first cf (list-delete p (list-find-best cf p))))))

The running time of the list-sort-best-first procedure grows quadratically
with the length of the input list. We use n to represent the number of
elements in the input list. There are n recursive applications since each
application of list-delete produces an output list that is one element shorter
than its input list. In addition to the constant time procedures (null? and
cons), the body of list-sort-best-first involves two applications of list-find-best
on the input list, and one application of list-delete on the input list.

As analyzed earlier, each of these applications has running time in ©(m)
where m is the length of the input list to list-find-best and list-delete (we use
m here to avoid confusion with 7, the length of the first list passed into list-
sort-best-first). In the first application, this input list will be a list of length ,
but in later applications it will be involve lists of decreasing length: n — 1,
n—2,---, 1. Hence, the average length of the input lists to list-find-best and
list-delete is approximately 7. Thus, the average running time for each of
these applications is in @(%), which is equivalent to ®(n).

There are three applications (two of [ist-find-best and one of list-delete) for
each application of list-sort-best-first, so the total running time for each ap-
plication is in ©(3n), which is equivalent to ®(n). There are n recursive
applications, each with average running time in ©(#n), so the running time
for list-sort-best-first is in ®(n?). This means doubling the length of the in-
put list quadruples the expected running time, so we would except sorting
a list of 2000 elements to take approximately four times as long as sorting a
list of 1000 elements.

Let expression. Each application of the list-sort-best-first procedure in-
volves two evaluations of (list-find-best cf p), a procedure with running time
in ©(n) where 7 is the length of the input list.

The result of both evaluations is the same, so there is no need to evaluate
this expression twice. We could just evaluate (list-find-best cf p) once and
reuse the result. One way to do this is to introduce a new procedure us-
ing a lambda-expression and pass in the result of (list-find-best cf p) as a

Chapter 9. Sorting and Searching 215

parameter to this procedure so it can be used twice:

(define (list-sort-best-first-nodup cf p)
(if (null? p)
null
((lambda (best)
(cons best (list-sort-best-first-nodup cf (list-delete p best))))
(list-find-best cf p))))

This procedure avoids the duplicate evaluation of (list-find-best cf p), but is
quite awkward to read and understand. Scheme provides the let-expression
special form to avoid this type of duplicate work more elegantly.

The let-expression is a special form. The grammar for the let-expression is:

Expression = LetExpression
LetExpression ::= (let (Bindings) Expression)
Bindings = Binding Bindings
Bindings = €

Binding = (NName Expression)

The evaluation rule for the let-expression is:

Evaluation Rule 6: Let-expression. To evaluate a let-expression,
evaluate each binding in order. To evaluate each binding, eval-
uate the binding expression and bind the name to the value
of that expression. Then, the value of the let-expression is the
value of the body expression evaluated with the names in the
expression that match binding names substituted with their bound
values.

A let-expression can be transformed into an equivalent application expres-
sion. The let-expression

(let ((Name; Expression)
(Name, Expression;)

(Namey, Expressiony))
Expressiony,g,)

is equivalent to the application expression:

216 9.1. Sorting

((lambda (Name; Name; ... Namey)
Expressiony,gy)
Expression; Expression; ... Expressiony)

The advantage of the let-expression syntax is it puts the expressions next to
the names to which they are bound. Using a let-expression, we can define
list-sort-best-first to avoid the duplicate evaluations of list-find-best in a way
that is easier to read and understand than the application expression:

(define (list-sort-best-first-let cf p)
(if (null? p)
null
(let ((best (list-find-best cf p)))
(cons best (list-sort-best-first-let cf (list-delete p best))))))

This runs faster than list-sort-best-first since it avoids the duplicate evalua-
tions of list-find-best, but the asymptotic growth rate is the same. The run-
ning time of list-sort-best-first-let is in @(n?) since there are n recursive ap-
plications of list-sort-best-first-let and each application involves linear time
applications of list-find-best and list-delete. It improves the actual running
time by avoiding the duplicate work, but does not impact the asymptotic
growth rate since the duplicate work is hidden in the constant factor.

Exercise 9.1. Use the time special form (introduced in Chapter 7) to measure
the actual evaluation times for applications of the list-sort-best-first proce-
dure. See if the results in your interpreter match the expected running
times based on the analysis that the running time of the procedure is in
@(nz). Hint: You may find it helpful to define a procedure that constructs a list contain-
ing n random elements. To generate the random elements use the built-in procedure random
that takes one Number as input and evaluates to a random number between 0 and one less
than the value of the input Number. Be careful in your time measurements that you do not

include the time required to generate the input list.

Exercise 9.2. Compare the running times of the original list-sort-best-first
procedure and the list-sort-best-first-let procedure that avoids duplicate
work. Are the timing results consistent with the analysis?

Exercise 9.3. | x| Define the list-find-best procedure using the list-accumulate
procedure from Section 5.4.2 and evaluate its asymptotic running time.

Chapter 9. Sorting and Searching 217

Exercise 9.4. Instead of sorting the elements by finding the best element
first and putting at the front of the list, we could sort by finding the worst
element first and putting it at the end of the list. Define a list-sort-worst-
last procedure that sorts this way and analyze the running time of your
list-sort-worst-last procedure.

9.1.2 Insertion Sort

The list-sort-best-first procedure seems quite inefficient. For every output
element, we are searching the whole remaining list to find the best element,
but do nothing of value with all the comparisons that were done to find the
best element.

An alternate approach is to build up a sorted list as we go through the
elements. Insertion sort works by putting the first element in the list in the
right place in the list that results from sorting the rest of the elements.

First, we define the list-insert-one procedure that takes three inputs: a com-
parison procedure, an element, and a List. The input List must be sorted
according to the comparison function. As output, list-insert-one produces
a List consisting of the elements of the input List, with the input element
inserts in the right place according to the comparison function.

(define (list-insert-one cf el p) ; requires: p must be in sorted order by cf
(if (null? p)
(list el)
(if (cf el (car p))
(cons el p)
(cons (car p) (list-insert-one cf el (cdr p))))))

The running time for list-insert-one is in ©(n) where n is the number of
elements in the input list. In the worst case, the input element belongs at
the end of the list and we need to make n recursive applications of list-
insert-one. Each application involves constant work, so the overall running
time of list-insert-one is in ©(n).

To sort the whole list, we need to insert each element into the list that results
from sorting the rest of the elements:

(define (list-sort-insert cf p)
(if (null? p)
null
(list-insert-one cf (car p) (list-sort-insert cf (cdr p)))))

218 9.1. Sorting

Evaluating an application of list-sort-insert on a list of length n involves n
recursive applications of list-sort-insert. The lengths of the input lists in the
recursive applications are n — 1, n — 2, ..., 0. Each application involves an
application of list-insert-one which has running time in @ (m) where m is the
number of elements in the input list to list-insert-one. The average length of
the input list over all the applications is approximately %, so the average
running time of the list-insert-one applications is in ©(n). Since there are n
applications of list-insert-one, the total running time is in @ (n?).

Exercise 9.5. We analyzed the worst case running time of list-sort-insert
above. Analyze the best case running time. Your analysis should identify
the inputs for which list-sort-insert runs fastest, and describe the asymptotic
running time is for the best case input.

Exercise 9.6. Both the list-sort-best-first-sort and list-sort-insert procedures
have asymptotic running times in ®(n?). This tells us how their worst case
running times grow with the size of the input, but isn’t enough to know
which procedure is faster for a particular input. For the questions below,
use both analytical and empirical analysis to provide a convincing answer.

a. How do the actual running times of list-sort-best-first-sort and list-sort-
insert on typical inputs compare?

b. Are there any inputs for which list-sort-best-first is faster than list-sort-
insert?

c. For sorting a long list of n random elements, how long does each pro-
cedure take? (See Exercise 9.1 for help on creating a list of random ele-
ments.)

9.1.3 Quicker Sorting

Although insertion sort is typically faster than best-first sort, its running
time is still scales quadratically with the length of the list. If it takes 100
milliseconds (one tenth of a second) to sort a list containing 1000 elements
using list-sort-insert (on my laptop, it takes about 120 milliseconds to sort a
random list of 1000 elements), we would expect it to take four (= 22) times
as long to sort a list containing 2000 elements, and a million times (= 1000?)
as long (over a day!) to sort a list containing one million (1000 * 1000) ele-
ments. Yet computers routinely need to sort lists containing many millions
of elements (for example, consider processing credit card transactions or
analyzing the data collected by a super collider).

Chapter 9. Sorting and Searching 219

The problem with our insertion sort is that it divides the work unevenly
into inserting one element and sorting the rest of the list. This is a very
unequal division. Any sorting procedure that works by considering one
element at a time and putting it in the sorted position as is done by list-sort-
find-best and list-sort-insert will have a running time in Q(n?). We cannot do
better than this with this strategy since there are n elements, and the time
required to figure out where each element goes is in Q(n).

To do better, we need to either reduce the number of recursive applications
needed to sort the list (this would mean each recursive call results in more
than one element being sorted), or reduce the time required for each appli-
cation. The approach we take is to use each recursive application to divide
the list into two approximately equal-sized parts, but to do the division in
such a way that the results of sorting the two parts can be combined di-
rectly to form the result. This means, we should partition the elements in
the list so that all elements in the first part are less than (according to the
comparison function) all elements in the second part.

Our first attempt is to modify insert-one to partition the list into two parts
(this approach does not quite produce a sorting procedure with running
time in better than @(n?) because of the inefficiency of accessing list el-
ements; however, this attempt leads to insights for producing a quicker
sorting procedure).

First, we define the list-extract procedure that takes three inputs: a List, and
two Numbers indicating the start and end positions. As output, it produces
a List consisting of the elements of the input list between the start and end
position.

(define (list-extract p start end)
(if (= start 0)
(if (= end 0)
null
(cons (car p) (list-extract (cdr p) start (— end 1))))
(list-extract (cdr p) (— start 1) (— end 1))))

The running time of the list-extract procedure is in ©(n) where n is the
number of elements in the input list. The worst case input is when the
value of end is the length of the input list, which means there will be n
recursive applications, each involving a constant amount of work.

We use list-extract to define procedures for obtaining lists of the first and
second halves of the elements of an input list (when the list has an odd
number of elements, we put the middle element in the second half of the
list).

220 9.1. Sorting

(define (list-first-half p)
(list-extract p O (floor (/ (list-length p) 2))))

(define (list-second-half p)
(list-extract p (floor (/ (list-length p) 2)) (list-length p)))

The list-first-half and list-second-half procedures apply list-extract, so they
have running times in © (1) where 7 is the number of elements in the input
list.

Next, we define the list-insert-one-halves procedure to only consider the ap-
propriate half of the list.

(define (list-insert-one-halves cf el p) ; requires: p is sorted by cf
(if (null? p)
(list el)
(if (null? (cdr p))
(if (cf el (car p)) (cons el p) (list (car p) el))
(et ((front (list-first-half p))
(back (list-second-half p)))
(if (cf el (car back))
(list-append (list-insert-one-halves cf el front) back)
(list-append front (list-insert-one-halves cf el back)))))))

In addition to the normal base case when the input list is null, we need a
special case when the input list has one element. If the element to be in-
serted is before this element, the output is produced using cons; otherwise,
we produce a list of the first (only) element in the list followed by the in-
serted element.

In the recursive case, we use the list-first-half and list-second-half procedures
to split the input list and bind the results of the first and second halves to
the front and back variables so we do not need to evaluate these expressions
more than once.

Since the list passed to list-insert-one-halves must be sorted, the elements in
front are all less than the first element in back. Hence, we can determine
into which of the sublists contains the element should be inserted using
just one comparison: if the element is before the first element in back it
is in the first half, and we produce the result by appending the result of
inserting the element in the front half (the recursive call) with the back half
unchanged; if the element is not before the first element in back, then it is in
the second half, so we produce the result by keeping the front half as it is,
and appending it with the result of inserting the element in the back half.

To analyze the running time of list-insert-one-halves we determine the num-

Chapter 9. Sorting and Searching 221

ber of recursive calls and the amount of work involved in each application.
We use n to denote the number of elements in the input list. Unlike the
other recursive list procedures we have analyzed, the number of recursive
applications of list-insert-one-halves does not scale linearly with the length of
the input list. The reason for this is that instead of using (cdr p) in the recur-
sive application, list-insert-one-halves passes in either the front or back value
which is the result of (first-half p) or (second-half p) respectively. The length
of the list produced by these procedures is approximately % the length of
the input list. With each recursive application, the size of the input list is
halved. This means, doubling the size of the input list only adds one more
recursive application.

Recall that the logarithm (log,) of a number n is the number x such that
b* = n where b is the base of the logarithm. If the base is 10, then the value
of log,, n is the number x such that 10* = n. For example, log,,10 = 1 and
log,,1000 = 3. In computing, we most commonly encounter logarithms
with base 2. Doubling the input value, increases the value of its logarithm
base two by one: log,2n = 1+ log, n. This corresponds to the situation
with list-insert-one-halves, where doubling the size of the input increases
the number of recursive applications by one.

Changing the base of a logarithm from k to b changes the value by the con-
stant factor (see Section 8.1.1), so inside the asymptotic operators a constant
base of a logarithm does not matter. Thus, when the amount of work in-
creases by some constant amount when the input size doubles, we write
that the growth rate is in ©(log 1) without specifying the base of the loga-
rithm. Thus, the number of recursive applications of list-insert-one-halves is
in O(log n) since doubling the size of the input requires one more recursive
application.

Each application of list-insert-one-halves involves an application of list-append
where the first parameter is either the front half of the list, or the result of

inserting the element in the front half of the list. In either case, the length

of the list is approximately 5. The running time of list-append is in © (m)

where m is the length of the first input list. So, the time required for each

list-insert-one-halves application is in ®(n) where 7 is the length of the input

list to list-insert-one-halves.

The lengths of the input lists to list-insert-one-halves in the recursive calls

are approximately 75, %, g, ..., 1 since the length of the list halves with

each call. The summation has log, n terms, and the sum of the list is 7,
SO th.e average length ‘inpu’t is logz . I‘{en‘ce, the ‘tot'al running time‘ f(?r
the list-append applications in each application of list-insert-one-halves is in

O(log, n x @) = 0O(n).

sorted binary tree

222 9.1. Sorting

The analysis of the applications of list-first-half and list-second-half is simi-
lar: each requires running time in © (m) where m is the length of the input
list, which averages |, gz . where 7 is the length of the input list of list-insert-
one-halves. Hence, the total running time for list-insert-one-halves is in © (n).

The list-sort-insert-halves procedure is identical to list-sort-insert (except for
calling list-insert-one-halves):

(define (list-sort-insert-halves cf p)
(if (null? p)
null
(list-insert-one-halves cf (car p) (list-sort-insert-halves cf (cdr p)))))

As with list-sort-insert, the list-sort-insert-halves procedure involves n ap-
plications of list-insert-one-halves, and the average length of the input list
is . Since list-sort-insert-halves involves ©(n) applications of list-insert-one-
halves (with average input list length of 7, the total running time for list-sort-
insert-halves is in ®(n?). Because of the cost of evaluating the list-append,
list-first-half, and list-second-half applications, the change to splitting the list
in halves has not improved the asymptotic performance; in fact, because of
all the extra work in each application, the actual running time is most likely
higher than it was for list-sort-insert.

The problem with our list-insert-one-halves procedure is that the list-first-half
and list-second-half procedures have to cdr down the whole list to get to the
middle of the list, and the list-append procedure needs to walk through the
entire input list to put the new element in the list. All of these procedures
have running times that scale linearly with the length of the input list.

What we need is some way of getting to the middle of the list quickly. With
the standard list representation this is impossible: it requires one cdr appli-
cation to get to the next element in the list, so there is no way to access the
middle of the list without using at least 5 applications of cdr. To do better,
we need to change the way we represent our data.

9.1.4 Binary Trees

The data structure we will use is known as a sorted binary tree. While a List
provides constant time procedures for accessing the first element and the
rest of the elements, a binary tree provides constant time procedures for
accessing the root element, the left side of the tree, and the right side of the
tree. The left and right sides of the tree are themselves trees. So, like a list,
a binary tree is a recursive data structure.

We define a binary tree as:

Chapter 9. Sorting and Searching 223

tree ::= null
tree ::= (make-tree Tree Element Tree)

Whereas we defined a List (in Chapter 5) as:
A List is either (1) null or (2) a Pair whose second cell is a List.
a Tree is defined as:

A Tree is either (1) null or (2) a triple while first and third parts
are both Trees.

The make-tree procedure can be defined using cons to package the three in-
puts into a tree:

(define (make-tree left element right)
(cons element (cons left right)))

We define selector procedures for extracting the parts of a non-null tree:

(define (tree-element tree) (car tree))
(define (tree-left tree) (car (cdr tree)))
(define (tree-right tree) (cdr (cdr tree)))

The tree-left and tree-right procedures are constant time procedures that
evaluate to the left or right subtrees respectively of a tree.

The tree elements are maintained in a sorted structure. All elements in the
left subtree of a Tree are less than (according to the comparison function)
the value of the root element of the Tree; all elements in the right subtree
of a Tree are greater than or equal to the value of the root element of the
Tree (the result of comparing them with the root element is false). For ex-
ample, here is a sorted binary tree containing 6 elements using < as the
comparison function:

depth

224 9.1. Sorting

The top node has element value 7, and its left subtree is a tree containing
the tree elements whose values are less than 7. The null subtrees are not
shown. For example, the left subtree of the element whose value is 12 is
null. Note that although there are six elements in the tree, we can reach any
element from the top by following at most two branches. By contrast, with
a list of six elements, we would need five cdr operations to reach the last
element.

The depth of a tree is the largest number of steps needed to reach any node
in the tree starting from the root. The example tree has depth 2, since we
can reach every node starting from the root of the tree in two or fewer steps.
A tree of depth d can contain up to 27+ — 1 elements. One way to see this is
from this recursive definition for the maximum number of nodes in a tree:

1 : d=0

TreeNodes(d) = { TreeNodes(d — 1) + 2 x TreeLeaves(d —1) : d >0

A tree of depth zero has one node. Increasing the depth of a tree by one
means we can add two nodes for each leaf node in the tree, so the total
number of nodes in the new tree is the sum of the number of nodes in the
original tree and twice the number of leaves in the original tree. The max-
imum number of leaves in a tree of depth d is 27 since each level doubles
the number of leaves. Hence, the second equation simplifies to

TreeNodes(d — 1) +2 x 2971 = TreeNodes(d — 1) + 2°.

The value of TreeNodes(d — 1) is 2971 +2972 + .. +1 = 2¢ — 1. Adding
2% and 27 — 1 gives 29*1 — 1 as the maximum number of nodes in a tree of
depth d. Hence, a well-balanced tree containing n nodes has depth approx-
imately log, n.

The list-first-half, list-second-half, and list-append procedures that had run-
ning times in @(n) for the standard list representation can all be imple-
mented with constant running times using the tree representation. For
example, list-first-half can be implemented using tree-left and list-second-
half can be implemented using tree-right. To implement list-append requires
making a new tree using make-tree, which is also a constant time procedure.

The tree-insert-one procedure inserts an element in a sorted binary tree:

Chapter 9. Sorting and Searching 225

(define (tree-insert-one cf el tree)
(if (null? tree)
(make-tree null el null)
(if (cf el (tree-element tree))
(make-tree (tree-insert-one cf el (tree-left tree))
(tree-element tree)
(tree-right tree))
(make-tree (tree-left tree)
(tree-element tree)
(tree-insert-one cf el (tree-right tree))))))

When the input tree is null, the new element is the top element of a new tree
whose left and right subtrees are null. Otherwise, the procedure compares
the element to insert with the element at the top node of the tree. If the
comparison evaluates to true, the new element belongs in the left subtree.
The result is a tree where the left tree is the result of inserting this element
in the old left subtree, and the element and right subtree are the same as
they were in the original tree. For the alternate case, the element is inserted
in the right subtree, and the left subtree is unchanged.

Unlike list-insert-one, the tree-insert-one procedure involves only applica-
tions of constant time procedures, except for the recursive application. As-
suming the tree is well balanced (that is, the left and right subtrees contain
the same number of elements), each recursive application halves the size of
the input tree so there are approximately log, n recursive calls. Hence, the
running time for using tree-insert-one to insert an element in a well balanced
tree is in @(logn).

Using tree-insert-one, we can define list-to-sorted-tree, a procedure that takes
a comparison function and a List as its inputs, and outputs a sorted binary
tree containing the elements in the input list. It works by inserting each
element of the list in turn into the sorted tree:

(define (list-to-sorted-tree cf p)
(if (null? p)
null
(tree-insert-one cf (car p) (list-to-sorted-tree cf (cdr p)))))

Assuming well-balanced trees as above (we revisit this assumption later),
the expected running time of list-to-sorted-tree is in ©(nlogn) where n is
the size of the input list. There are n recursive applications of list-to-sorted-
tree since each application uses cdr to reduce the size of the input list by
one. Each application involves an application of tree-insert-one (as well as
only constant-time procedures), so the expected running time of each ap-
plication is in ©(logn). Hence, the total running time for list-to-sorted-tree

226 9.1. Sorting

isin ©(nlogn): there are n applications of tree-insert-one, each of which has
expected running time in © (log n).

To use our list-to-sorted-tree procedure to perform sorting we need to extract
a list of the elements in the tree in the correct order. The leftmost element
in the tree should be the first element in the list. Starting from the top node,
all elements in its left subtree should appear before the top element, and all
the elements in its right subtree should follow it. The tree-extract-elements
procedure does this:

(define (tree-extract-elements tree)
(if (null? tree)
null
(list-append (tree-extract-elements (tree-left tree))
(cons (tree-element tree)
(tree-extract-elements (tree-right tree))))))

The total number of applications of tree-extract-elements is between n (the
number of elements in the tree) and 3#n since there can be up to two null
trees for each leaf element (it could never actually be 37, but for our asymp-
totic analysis it is enough to know it is always less than some constant mul-
tiple of n). For each application, the body applies list-append where the first
parameter is the elements extracted from the left subtree. The end result of
all the list-append applications is the output list, containing the n elements
in the input tree.

Hence, the total size of all the appended lists is at most 71, and the running
time for all the list-append applications is in @(n). Since this is the total
time for all the list-append applications, not the time for each application
of tree-extract-elements, the total running time for tree-extract-elements is the
time for the recursive applications, in ©(n), plus the time for the list-append
applications, in ©(n), which is in ©(n).

Putting things together, we define list-sort-tree by applying tree-extract-elements
to the result of list-to-sorted-tree:

(define (list-sort-tree cf p)
(tree-extract-elements (list-to-sorted-tree cf p)))

The total running time for list-sort-tree is the running time of the list-to-
sorted-tree application plus the running time of the tree-extract-elements ap-
plication. The running time of list-sort-tree is in ©(nlogn) where n is the
number of elements in the input list (in this case, the number of elements
in p), and the running time of tree-extract-elements is in ®(n) where n is the
number of elements in its input list (which is the result of the list-to-sorted

Chapter 9. Sorting and Searching 227

tree application, a list containing 1 elements where 7 is the number of ele-
ments in p).

Only the fastest growing term contributes to the total asymptotic running
time, so the expected total running time for an application of list-sort-tree-
insert to a list containing n elements is in ®(nlogn). This is substantially
better than the previous sorting algorithms which had running times in
@(n?) since logarithms grow far slower than their input. For example, if n
is one million, n2 is over 50,000 times bigger than nlog, n; if n is one bil-
lion, n? is over 33 million times bigger than 1 log, 1 since log, 1000000000
is just under 30. There is no general sorting procedure that has expected
running time better than ®@(n logn), so there is no algorithm that is asymp-
totically faster than list-sort-tree (in fact, it can be proven that no asymptot-
ically faster sorting procedure exists). There are, however, sorting proce-
dures that may have advantages such as how they use memory which may
provide better absolute performance in some situations.

Unbalanced Trees. Our analysis assumes the left and right halves of the
tree passed to tree-insert-one having approximately the same number of el-
ements. If the input list is in random order, this assumption is likely to
be valid: each element we insert has equal probability of going in the left
or right half, so the halves contain approximately the same number of el-
ements all the way down the tree. But, if the input list is not in random
order this may not be the case.

For example, suppose the input list is already in sorted order. Then, each
element that is inserted will be the rightmost node in the tree when it is
inserted. For the previous example, this produces the unbalanced tree:

1

N
N
S
N

This tree contains the same six elements as the earlier example, but because
it is not well-balanced the number of branches that must be traversed to

My first task was to implement
. a library subroutine for a
new fast method of internal

sorting just invented by

Shell. .. My boss and tutor, Pat

Shackleton, was very pleased
with my completed program. I
then said timidly that I thought
I had invented a sorting method
that would usually run faster
than Shell sort, without taking
much extra store. He bet me
sixpence that I had not.

Although my method was very

difficult to explain, he finally
agreed that I had won my bet.
Sir Tony Hoare, The Emperor’s
Old Clothes, 1980 Turing Award
Lecture. (Shell sort is a ©(n?)
sorting algorithm, somewhat
similar to insertion sort.)

228 9.1. Sorting

reach the deepest element is 5 instead of 2. Similarly, if the input list is in
reverse sorted order, we will have an unbalanced tree where only the left
branches are used.

In these pathological situations, the tree effectively becomes a list. The
number of recursive applications of tree-insert-one needed to insert a new
element will not be in ©(logn), but rather will be in ©(n). Hence, the
worst case running time for list-sort-tree-insert is in ®@(n?) since the worst
case time for tree-insert-one is in ®(n) and there are ®(n) applications of
tree-insert-one. The list-sort-tree-insert procedure has expected running time
in ®(nlogn) for randomly distributed inputs, but has worst case running
time in © (n?).

Exercise 9.7. Define a procedure binary-tree-size that takes as input a binary
tree and outputs the number of elements in the tree. Analyze the running
time of your procedure.

Exercise 9.8. Define a procedure binary-tree-depth that takes as input a
binary tree and outputs the depth of the tree. Recall that the depth of a
binary tree is the length of the longest path from the root to any node in
the tree. The running time of your procedures should not grow faster than
linearly with the number of nodes in the tree.

Exercise 9.9. Define a procedure binary-tree-balance that takes as input
a sorted binary tree and the comparison function, and outputs a sorted
binary tree containing the same elements as the input tree but in a well-
balanced tree. The depth of the output tree should be no higher than
log, n +1 where 1 is the number of elements in the input tree.

9.1.5 Quicksort

Although building and extracting elements from trees allows us to sort
with expected time in ©(nlogn), the constant time required to build all
those trees and extract the elements from the final tree is high.

In fact, we can use the same approach to sort without needing to build trees.
Instead, we keep the two sides of the tree as separate lists, and sort them
recursively. The key is to divide the list into halves by wvalue, instead of by
position. The values in the first half of the list are all less than the values in
the second half of the list, so the lists can be sorted separately.

The list-quicksort procedure uses list-filter (from Example 5.5) to divide the

Chapter 9. Sorting and Searching 229

input list into sublists containing elements below and above the compari-
son element, and then recursively applies list-quicksort to sort those sublists.

(define (list-quicksort cf p)
(if (null? p)
null
(list-append
(list-quicksort cf (list-filter
(lambda (el) (cf el (car p)))
(cdr p)))
(cons (car p)
(list-quicksort cf (list-filter
(Iambda (el) (not (cf el (car p))))
(cdr p))))

This is the famous quicksort algorithm that was invented by Sir C. A. R.
(Tony) Hoare while he was an exchange student at Moscow State Univer-
sity in 1959. He was there to study probability theory, but also got a job
working on a project to translate Russian into English. The translation
depended on looking up words in a dictionary. Since the dictionary was
stored on a magnetic tape which could be read in order faster than if it was
necessary to jump around, the translation could be done more quickly if the
words to translate were sorted alphabetically. Hoare invented the quicksort
algorithm for this purpose. A few years later, he worked for Elliot Broth-
ers, a small British computer manufacturer. His first assignment there was
to implement a sorting library procedure for a new machine they were de-
veloping. Quicksort proved to be faster than the best previously known
sorting algorithms, and remains the most widely used sorting algorithm.

As with [ist-sort-tree-insert, the expected running time for a randomly ar-
ranged list is in ®(nlogn) and the worst case running time is in ®@(n?). In
the expected cases, each recursive call halves the size of the input list (since
if the list is randomly arranged we expect about half of the list elements
are below the value of the first element), so there are approximately log n
expected recursive calls.

Each call involves an application of list-filter, which has running time in
©(m) where m is the length of the input list. At each call depth, the total
length of the inputs to all the calls to list-filter is n since the original list
is subdivided into 27 sublists, which together include all of the elements
in the original list. Hence, the total running time is in ®(nlogn) in the
expected cases where the input list is randomly arranged. As with [ist-sort-
tree-insert, if the input list is not randomly rearranged it is possible that all
elements end up in the same partition. Hence, the worst case running time
of list-quicksort is still in @(n?).

Sir Tony Hoare

Photo by Gespiir fiir Licht

There are two ways of
constructing a software design:
one way is to make it so simple
that there are obviously no
deficiencies, and the other way
is to make it so complicated that
there are no obvious
deficiencies. The first method is
far more difficult. It demands
the same skill, devotion, insight,
and even inspiration as the
discovery of the simple physical
laws which underlie the

complex phenomena of nature.
Sir Tony Hoare, The Emperor’s
Old Clothes (1980 Turing Award
Lecture)

230 9.2. Searching

Exercise 9.10. Estimate the time it would take to sort a list of one million
elements using list-quicksort.

Exercise 9.11. Both the list-quicksort and list-sort-tree-insert procedures have
expected running times in ©(nlogn). How do their actual running times
compare?

Exercise 9.12. Is there a best case input for list-quicksort? Describe it and
analyze the asymptotic running time for list-quicksort on best case inputs.

Exercise 9.13. Instead of using binary trees, we could use ternary trees.
A node in a ternary tree has two elements, a left element and a right ele-
ment, where the left element must be before the right element according to
the comparison function. Each node has three subtrees: left, containing ele-
ments before the left element; middle, containing elements between the left
and right elements; and right, containing elements after the right element.
Is it possible to sort faster using ternary trees and with binary trees?

9.2 Searching

Nearly all problems can be thought of a search problems in a broad sense.
We can solve any problem by defining the space of possible solutions, and
then searching that space to find a correct solution. For example, to solve
the pegboard puzzle (Example 5.11) we found a way to enumerate all possi-
ble sequences of moves and searched that space to find a winning sequence.

In this section we explore a few specific types of search problems. First,
we consider the simple problem of finding an element in a list that satisfies
some property. Then, we consider searching for an item in sorted data.
Finally, we consider the more specific problem of efficiently searching for
documents (such as web pages) that contain some target word.

9.2.1 Unstructured Searching

To search for an item that satisfies an arbitrary property in unstructured
data, there is no alternative to testing each element in turn until one that
satisfies the property is found. Since we have no more information about
the property, there is no way to more quickly find a satisfying element.

The list-search procedure takes as input a matching function and a List, and
outputs the first element in the list that satisfies the matching function or

Chapter 9. Sorting and Searching 231

false if there is no satisfying element:!

(define (list-search ef p)
(if (null? p)
false ; Not found
(if (ef (car p))
(car p)
(list-search ef (cdr p)))))

Here are some example evaluations of list-search:

> (list-search (lambda (el) (= 12 el)) (intsto 10))

false

> (list-search (lambda (el) (= 12 el)) (intsto 15))
12

> (list-search (lambda (el) (> el 12)) (intsto 15))
13

Assuming the matching function has constant running time, the worst case
running time of list-search is linear in the size of the input list. The worst
case is when there is no satisfying element in the list. If the input list has
length 1, there are n recursive calls to list-search, each of which involves
only constant time procedures.

Without imposing more structure on the input and comparison function,
there is no asymptotically more efficient way to search. In the worst case,
we always need to test every element in the input list before concluding
that there is no element that satisfies the matching function.

9.2.2 Binary Search

If the data to search is structured, it may be possible to find an element that
satisfies some property without examining all elements. Suppose the input
data is a sorted binary tree, as introduced in Section 9.1.4. Then, with a sin-
gle comparison we can determine if the element we are searching for would
be in the left or right subtree. Instead of eliminating just one element with
each application of the matching function as was the case with list-search,
with a sorted binary tree a single application of the comparison function is
enough to eliminate approximately half the elements from consideration.

U the input list contains false as an element, we do not know when the list-search result
is false if it means the element is not in the list or the element whose value is false satisfies
the property. An alternative would be to produce an error if no satisfying element is found,
but this is more awkward when list-search is used by other procedures.

232 9.2. Searching

To implement binary-tree-search we need two input procedures, in addition
to the sorted binary tree containing the elements. We need one procedure
to determine when a satisfying element has been found (we call this the ef
procedure, since for many of our searches it is some kind of equality test),
and a second procedure, cf, to determine whether the left or right subtree
should be searched if the root element does not satisfy the ef procedure.
Since cf is used to traverse the tree, the input tree must be sorted by cf.

(define (binary-tree-search ef cf tree) ; requires: tree is sorted by cf
(if (null? tree)
false
(if (ef (tree-element tree))
(tree-element tree)
(if (cf (tree-element tree))
(binary-tree-search ef cf (tree-left tree))
(binary-tree-search ef cf (tree-right tree))))))

We can search for a number in a sorted binary tree of numbers by using =
as the equality function and < as the comparison function (which must be
the same as the comparison function used to build the tree).

(define (binary-tree-has-number tree target)

(if (binary-tree-search (lambda (el) (= target el))
(lambda (el) (< target el))
tree)

true

false))

To analyze the running time of binary-tree-search, we need to determine the
number of recursive calls. As with our analysis of list-sort-tree we need to
assume the input tree is well-balanced. If not, all the elements could be in
the right branch, for example, and binary-tree-search becomes like list-search
in the pathological case.

If the tree is well-balanced, each recursive call approximately halves the
number of elements in the input tree since it passed in either the left or
right subtree. Hence, the number of calls needed to reach a null tree is in
O(logn) where n is the number of elements in the input tree. This is the
depth of the tree: binary-tree-search traverses one path from the root through
the tree until either reaching an element that satisfies the ef function, or
reaching a null node.

Assuming the procedures passed as ef and cf have constant running time,
the work for each call is constant (except for the recursive call). Hence,
the total running time for binary-tree-search is in ©(logn) where n is the

Chapter 9. Sorting and Searching 233

number of elements in the input tree. This is a huge improvement over
linear searching: with linear search, doubling the number of elements in
the input doubles the search time; with binary search, doubling the input
size only increases the search time by a constant.

9.2.3 Indexed Search

The limitation of binary search is we can only use is when the input data is
already sorted. What if we want to search a collection of documents, such
as finding all web pages that contain a given word?

The web visible to search engines currently contains billions of web pages
most of which contain hundreds or thousands of words. A linear search
over such a vast corpus would be infeasible: supposing each word can be
tested in 1 millisecond, the time to search 1 trillion words would be over 30
years!

Providing useful searches over large data sets like web documents requires
finding a way to structure the data so it is not necessary to examine all
documents to perform a search. One way to do this is to build an index
that provides a mapping from words to the documents that contain them.
Then, we can build the index once, store it in a sorted binary tree, and use
it to perform all the searches. Once the index is built, the work required to
perform one search is just the time it takes to look up the target word in the
index. If the index is stored as a sorted binary tree, this is logarithmic in the
number of distinct words.

Strings. We use the built-in String datatype to represent documents and
target words. A String is similar to a List, but specialized for represent-
ing sequences of characters. A convenient way to make a String it to just
use double quotes around a sequence of characters. For example, "abcd"
evaluates to a String containing four characters.

The String data type provides built-in procedures for matching and order-
ing Strings:

* string=7?: String x String — Boolean — true if the input Strings have
exactly the same sequence of characters, otherwise false.

® string<?: String x String — Boolean — true if the first input String is
lexicographically before the second input String, otherwise false.

There are also built-in procedures for converting between Strings and Lists
of characters:

234 9.2. Searching

e string->list: String — List — evaluates to a List of characters corre-
sponding to the characters in the input String.

e list->string: List — String — evaluates to a String containing the char-
acters in the input List.

One advantage of using Strings instead of Lists of characters is the String
representation of "abcd" displays as a "abcd™ which is easier to read than
the List representation: (#\a #\b #\c #\d). Another advantage is the built-in
procedures for comparing Strings; we could certainly write similar proce-
dures for Lists of characters, but lexicographic ordering is somewhat tricky
to get right, so it is better to use the built-in procedures.

Building the index. The entries in the index are Pairs of a word (which we
will represent as a String), and a list of locations where that word appears
in the document set. Each location is a Pair consisting of a document iden-
tifier (for web documents, this is the Uniform Resource Locator (URL) that
is the address of the web page represented as a String) and a Number iden-
tifying the position within the document where the word appears (we label
positions as the number of characters in the document before this location).

To build the index, we need to split each document into words, and record
the position of each word in the document. The first step is to define a pro-
cedure that takes as input a String representing an entire document, and
produces a List of (word . position) pairs containing one element for each
word in the document. We define a word as a sequence of alphabetic char-
acters; any non-alphabetic character (such as a space, number, or punctua-
tion mark) is treated as a word separator and is not included in the index.

The text-to-word-positions procedure takes a String as input and outputs a
List of word-position pairs corresponding to each word in the input:

Chapter 9. Sorting and Searching 235

(define (text-to-word-positions s)
(define (text-to-word-positions-iter p w pos)
(if (null? p)
(if (null? w) null (list (cons (list->string w) pos)))
(if (not (char-alphabetic? (car p))) ; finished word
(if (null? w) ; no current word
(text-to-word-positions-iter (cdr p) null (+ pos 1))
(cons (cons (list->string w) pos)
(text-to-word-positions-iter
(cdr p)
null
(+ pos (list-length w) 1))))
(text-to-word-positions-iter
(cdr p)
(list-append w (list (char-downcase (car p))))
pos))))

(text-to-word-positions-iter (string->list s) null 0))

The inner procedure, text-to-word-positions-iter, takes three inputs: a List of
the characters in the document, a List of the characters in the current word,
and a Number representing the position in the String where the current
word starts. It outputs the List of (word . position) pairs. The value passed
in as w can be null, meaning there is no current word. Otherwise, it is a List
of the characters in the current word. A word starts when the first alpha-
betic character is found, and continues until either the first non-alphabetic
character or the end of the document. We use char-downcase to convert all
letters to their lowercase form, so KING, King, and king all correspond to
the same word.

The next step is to build an index from the List of word-position pairs. To
enable fast searching, we store the index in a binary tree sorted by the target
word. The insert-into-index procedure takes as input an index and a word-
position pair and outputs an index consisting of the input index with the
input word-position pair added.

The index is represented as a sorted binary tree where each element is a
Pair of a word and a List of the positions where that word appears. Each
word should appear in the tree only once, so if the word-position Pair to
be added corresponds to a word that is already in the index, the position
is added to the corresponding list of positions. Otherwise, a new entry
is added to the index for the word with a list of positions containing the
position as its only element.

236 9.2. Searching

(define (insert-into-index index wp)
(if (null? index)
(make-tree null (cons (car wp) (list (cdr wp))) null)
(if (string=? (car wp) (car (tree-element index)))
(make-tree (tree-left index)
(cons (car (tree-element index))
(list-append (cdr (tree-element index))
(list (cdr wp))))
(tree-right index))
(if (string<? (car wp) (car (tree-element index)))
(make-tree (insert-into-index (tree-left index) wp)
tree-element index)
tree-right index))
tree-left index)
tree-element index)
insert-into-index (tree-right index) wp))))))

(make-tree

N AN N AN N~

To insert all the (word . position) pairs in a list into the index, we use insert-
into-index to add each pair, passing the resulting index into the next recur-
sive call:

(define (insert-all-wps index wps)
(if (null? wps)
index
(insert-all-wps (insert-into-index index (car wps)) (cdr wps))))

To add all the words in a document to the index we use text-to-word-positions
to obtain the list of word-position pairs. Since we want to include the doc-
ument identity in the positions, we use list-map to add the url (a String that
identifies the document location) to the position of each word. Then, we
use insert-all-wps to add all the word-position pairs in this document to the
index. The index-document procedure takes a document identifier and its
text as a String, and produces an index of all words in the document.

(define (index-document url text)
(insert-all-wps
null
(list-map (lambda (wp) (cons (car wp) (cons url (cdr wp))))
(text-to-word-positions text))))

We leave analyzing the running time of index-document as an exercise. The
important point, though, is that it only has to be done once for a given set
of documents. Once the index is built, we can use it to answer any number
of search queries without needing to reconstruct the index. Large search

Chapter 9. Sorting and Searching 237

engine companies dedicate large numbers of machines to maintaining the
index as new web pages are found.

Merging indexes. Our goal is to produce an index for a set of documents,
not just a single document. So, we need a way to take two indexes pro-
duced by index-document and combine them into a single index. Then, we
can use this repeatedly to create an index of any number of documents. To
merge two indexes, we need to combine their word occurrences. If a word
occurs in both documents, the word should appear in the merged index
with a position list that includes all the positions in both indexes. If the
word occurs in only one of the documents, that word and its position list
should be included in the merged index.

(define (merge-indexes d1 d2)
(define (merge-elements p1 p2)
(if (null? p1)
p2
(if (null? p2)
pl
(if (string=7? (car (car p1)) (car (car p2)))
(cons (cons (car (car p1))
(list-append (cdr (car p1)) (cdr (car p2))))
(merge-elements (cdr p1) (cdr p2)))
(if (string<<? (car (car p1)) (car (car p2)))
(cons (car p1) (merge-elements (cdr p1) p2))
(cons (car p2) (merge-elements p1 (cdr p2))))))))
(list-to-sorted-tree
(lambda (e1 e2) (string<? (car el) (car e2)))
(merge-elements (tree-extract-elements d1)
(tree-extract-elements d2)))))))

To merge the indexes, we first use tree-extract-elements to convert the tree
representations to lists. The inner merge-elements procedure takes the two
Lists of word-position Pairs and outputs a single List.

Since the lists are sorted by the target word, we can perform the merge
efficiently. If the first words in both lists are the same, we produce a word-
position pair that appends the position lists for the two entries. If they are
different, we use string<? to determine which of the words belongs first,
and include that element in the merged list. This way, the two lists are kept
synchronized, so there is no need to search the lists to see if the same word
appears in both lists.

Obtaining documents. To build a useful index for searching, we need
some documents to index. The web provides a useful collection of freely

238 9.2. Searching

available documents. To read documents from the web, we use library
procedures provided by DrScheme.

This expression loads the libraries for managing URLs and getting files
from the network:

(require (lib "url.ss™ "net"))

One procedure this library defines is string->url, which takes a String as
input and produces a representation of that String as a URL. A Uniform
Resource Locator (URL) is a standard way to identify a document on the
network. The address bar in most web browsers typically displays the URL
of the currently displayed web page.

The full grammar for URLs is quite complex, but we will use simple web
page addresses of the form:?

URL == http:// Domain OptPath
Domain ::= Name MoreDomain
MoreDomain ::= . Domain
MoreDomain ::= €

OptPath == Path

OptPath = €

Path == [Name OptPath

An example of a URL is http://www.whitehouse.gov/index.html. The http
indicates the HyperText Transfer Protocol, which prescribes how the web
client (browser) and server communicate with each other. The domain
name is www.whitehouse.gov, and the path name is /index.html (which is
the default page for most web servers).

The library also defines the get-pure-port procedure which takes as input a
URL and produces a Port for reading the document at that location. The
read-char procedure takes as input a Port, and outputs the first character in
that Port. It also has a side-effect: it advances the Port to the next charac-
ter. We can use read-char repeatedly to read each character in the web page
of the Port. When the end of the file is reached, the next application of
read-char outputs a special marker representing the end of the file. The pro-
cedure eof-object? evaluates to true when applied to this marker, and false
for all other inputs.

The read-all-chars procedure takes a Port as its input, and produces a List
containing all the characters in the document the Port is associated with:

2We use Name to represent sequences of characters in the domain and path names, al-
though the actual rules for valid names for each of these are different.

Chapter 9. Sorting and Searching 239

(define (read-all-chars port)
(let ((c (read-char port)))
(if (eof-object? c)
null
(cons c (read-all-chars port)))))

Using these procedures, we define web-get, a procedure that takes as input
a String that represents the URL of some web page, and produces as output
a String representing the contents of that page.

(define (web-get url)
(list->string (read-all-chars (get-pure-port (string->url url)))))

To make it easy to build an index of a set of web pages, we define the index-
pages procedure that takes as input a List of web pages and outputs an
index of the words in those pages. It recurses through the list of pages, in-
dexing each document, and merging that index with the result of indexing
the rest of the pages in the list.

(define (index-pages p)
(if (null? p)
null
(merge-indexes (index-document (car p) (web-get (car p)))

(index-pages (cdr p)))))

We can use this to create an index of any set of web pages. For example,
here we use Jeremy Hylton’s collection of the complete works of William
Shakespeare (http://shakespeare.mit.edu) to define shakespeare-index as an
index of the words used in all of Shakespeare’s plays.

(define shakespeare-index
(index-pages
(list-map

(lambda (play)

(string-append "http://shakespeare.mit.edu/" play "/full.htm|"))

(list "allswell™ "asyoulikeit" "comedy_errors™ "cymbeline™ "llI"
"measure" "merry_wives" "merchant" "midsummer" "much_ado"
"pericles" "taming_shrew™ "tempest" "‘troilus_cressida" "twelfth_night"
"two_gentlemen™ "winters_tale" "1henryiv" "2henryiv" "henryv"
"1henryvi" "2henryvi™ "3henryvi" "henryviii" "john" "richardii"
"richardiii" "cleopatra" "coriolanus™ "hamlet" "julius_caesar" "lear"
"macbeth" "othello” "romeo_juliet" "timon" "titus"))))

Building the index takes about two and a half hours on my laptop. It con-
tains 22949 distinct words and over 1.6 million word occurrences. Much of

240 9.2. Searching

the time spent building the index is in constructing new lists and trees for
every change, which can be avoided by using the mutable data types we
cover in the next chapter. The key idea, though, is that the index only needs
to be built once. Once the documents have been indexed, we can use the
index to quickly perform any search.

Searching. Now that we have an index, searching for pages that use a
given word is easy and efficient. Since the index is a sorted binary tree,
the binary-tree-search procedure does what we need. We just need to pass
in procedures for testing if the target word has been found, and for using
the lexicographic ordering of the tree to determine whether the target word
would be in the left or right subtree. The search-in-index procedure takes as
input an index and a String representing the target word, and outputs the
entry in the index that corresponds to the target word or false if the target
word does not appear in the index.

(define (search-in-index index word)
(binary-tree-search
(lambda (el) (string=? word (car el)))
(lambda (el) (string<? word (car el)))
index))

As analyzed in the previous section, the expected running time of binary-
tree-search is in ®(log n) where n is the number of nodes in the input tree.?
The body of search-in-index applies binary-tree-search to the index. The num-
ber of nodes in the index is the number of distinct words in the indexed
documents. So, the running time of search-in-index scales logarithmically
with the number of distinct words in the indexed documents. Note that the
number and size of the documents does not matter! This is why a search
engine such as Google can respond to a query quickly even though its in-
dex contains many billions of documents.

One minor issue we should be careful about is the running time of the pro-
cedures passed into binary-tree-search. Our analysis of binary-tree-search re-
quires that the equality and comparison functions are constant time pro-
cedures. Here, the procedures as string=? and string<?, which both have
worst case running times that are linear in the length of the input string.
As used here, one of the inputs is the target word. So, the amount of work
for each binary-tree-search recursive call is in ©(w) where w is the length
of word. Thus, the overall running time of search-in-index is in @(wlog d)
where w is the length of word and d is the number of words in the index.
If we assume all words are of some maximum length, though, the w term

3Because of the way merge-indexes is defined, we do not actually get this expected run-
ning time. See Exercise 9.16.

Chapter 9. Sorting and Searching 241

disappears as a constant factor (that is, we are assuming w < C for some
constant C. Thus, the overall running time is in @(logd).

Here are some example uses of search-in-index using our index of Shake-
speare’s plays:

> (search-in-index shakespeare-index "mathematics")
("mathematics™"
("http://shakespeare.mit.edu/taming_shrew/full.htmi" . 26917)
("http://shakespeare.mit.edu/taming_shrew/full.html" . 75069)
("http://shakespeare.mit.edu/taming_shrew/full.html" . 77341))

> (search-in-index shakespeare-index "procedure")

false

> (search-in-index shakespeare-index "abstraction™)

false

Our search-in-index and index-pages procedures form the beginnings of a
search engine service. A useful web search engine needs at least two more
capabilities: a way to automate the process of finding documents to index,
and a way to rank the documents that contain the target word by the likeli-
hood they are useful. The two explorations at the end of this section explore
how to provide these capabilities.

Histogram. = We can also use our index to answer various interesting
questions about Shakespeare’s writing. For example, the procedure index-
histogram produces a list of the words in an index sorted by how frequently
they appear.

(define (index-histogram index)
(list-quicksort
(lambda (eI e2) (> (cdr el) (cdr e2)))
(list-map (lambda (el) (cons (car el) (length (cdr el))))
(tree-extract-elements index))))

The expression

(list-filter (lambda (entry) (> string-length (car entry) 5))
(index-histogram shakespeare-index))

evaluates to a list of Shakespeare’s favorite 6-letter and longer words:

The mathematics and the
metaphysics, Fall to them as
you find your stomach serves
you; No profit grows where is
no pleasure ta’en: In brief, sir,

study what you most affect.
William Shakespeare,
The Taming of the Shrew

242 9.2. Searching

(("blockquote™ . 63345) ("speech™ . 31099)
("should" . 1557) ("father" . 1086) ("exeunt" . 1061)
("master" . 861) ("before" . 826) ("mistress" . 787)
("brother" . 623)
... ("daughter" . 452)
... ("mother" . 418)

.. ("mustardseed" . 13)

. ("excrement" . 5)

(

. ("zwaggered" . 1))

The first two are words from the web page formatting markup, not from
Shakespeare’s writing. The rest of the word frequencies provide a glimpse
into Shakespeare’s world.

Exercise 9.14. Define a procedure for finding the longest word in a docu-
ment. Analyze the running time of your procedure.

Exercise 9.15. Analyze the running time required to build the index.

a. Analyze the running time of the text-to-word-positions procedure. Use
n to represent the number of characters in the input String, and w to
represent the number of distinct words. Be careful to clearly state all
assumptions on which your analysis relies.

b. Analyze the running time of the insert-into-index procedure.
¢. Analyze the running time of the index-document procedure.
d. Analyze the running time of the merge-indexes procedure.

e. Analyze the overall running time of the index-pages procedure. Your
result should describe how the running time is impacted by the number
of documents to index, the size of each document, and the number of
distinct words.

Chapter 9. Sorting and Searching 243

Exercise 9.16. | The search-in-index procedure does not actually have the
expected running time in @(logw) (where w is the number of distinct
words in the index) for the Shakespeare index because of the way it is built
using merge-indexes. The problem has to do with the running time of the bi-
nary tree on pathological inputs. Explain why the input to list-to-sorted-tree
in the merge-indexes procedure leads to a binary tree where the running time
for searching is in ©(w). Modify the merge-indexes definition to avoid this
problem and ensure that searches on the resulting index run in @(log w).

Exploration 9.1: Web Crawling

For our Shakespeare index example, we manually found a list of interest-
ing documents to index. This approach does not scale well to indexing the
World Wide Web where there are trillions of documents and new ones are
created all the time. For this, we need a web crawler.

A web crawler finds documents on the web to add to a search index. Typ-
ical web crawlers start with a set of seed URLs, and then find more doc-
uments to index by following the links on those pages. This proceeds re-
cursively: the links on each newly discovered page are added to the set of
URLs for the crawler to index. To develop a web crawler, we need a way
to extract the links on a given web page, and to manage the set of pages to
index.

a. Define a procedure extract-links that takes as input a String repre-
senting the text of a web page and outputs a List of all the pages linked
to from this page. Linked pages can be found by searching for anchor
tags on the web page. An anchor tag has the form:* .
(The text-to-word-positions procedure may be a helpful starting point for
defining extract-links.)

b. Define a procedure crawl-page that takes as input an index and a
String representing a URL. As output, it produces a pair consisting of
an index (that is the result of adding all words from the page at the in-
put URL to the input index) and a List of URLs representing all pages
linked to by the crawled page.

c. Define a procedure crawl-web that takes as input a List of seed URLs
and a Number indicating the maximum depth of the crawl. It should
output an index of all the words on the web pages at the locations given
by the seed URLs and any page that can be reached from these seed
URLs by following no more than the maximum depth number of links.

4Not all links match this structure exactly, so this may miss some of the links on a page.

The rank assigned to a
document is calculated from the
ranks of documents citing it. In

addition, the rank of a

document is calculated from a
constant representing the
probability that a browser
through the database will

randomly jump to the
document. The method is
particularly useful in
enhancing the performance of
search engine results for
hypermedia databases, such as
the world wide web, whose
documents have a large
variation in quality.

United States Patent #6,285,999,
September 2001. (Inventor:
Lawrence Page, Assignee:
Stanford University)

relaxation

244 9.2. Searching

|
Exploration 9.2: Ranking Pages

For a web search engine to be useful, we don’t want to get all the pages that
contain some target word, we want to get a few pages that contain the tar-
get word that are the pages that are most likely to be interesting. Selecting
the best pages for a given query is a challenging and important problem,
and the ability to do this well is one of the main things that distinguishes
successful and unsuccessful commercial web search engines. Many factors
are used to rank pages including an analysis of the text on the page itself,
whether the target word is part of a title, how recently the page was up-
dated, etc.

The most interesting ways of ranking pages also consider the pages that
link to the ranked page. If many pages link to a given page, it is more likely
that the given page is useful. This property can also be defined recursively:
a page is highly ranked if there are many highly-ranked pages that link to
it.

The ranking system used by Google is based on this formula:

Ry = ¥ R

vELy L(ZJ)

where L, is the set of web pages that contain links to the target page u
and L(v) is the number of links on the page v (thus, the value of a link
from a page containing many links is less than the value of a link from
a page containing only a few links). The value R(u) gives a measure of
the ranking of the page identified by u, where higher values indicate more
valuable pages.

The problem with this formula is that is is circular: there is no base case,
and no way to order the web pages to compute the correct rank of each
page in turn, since the rank of each page depends on the rank of the other
pages that link to it.

One way to approximate equations like this one is to use relaxation. Re-
laxation obtains an approximate solution to some systems of equations by
repeatedly evaluating the equations. To estimate the page ranks for a set of
web pages, we initially assume every page has rank 1 and evaluate R(u) for
all the pages (using the value of 1 as the rank for every other page). Then,
re-evaluate the R(u) values using the resulting ranks. A relaxation keeps
repeating until the values stop changing by some threshold amount, but
there is no guarantee how quickly this will happen. For the page ranking
evaluation, it may be enough to decide on some fixed number of iterations
and use the ranks resulting from the last iteration as the final ranks.

Chapter 9. Sorting and Searching 245

a. Define a procedure, web-link-graph, that takes as input a set of URLs
and produces as output a graph of the linking structure of those docu-
ments. The linking structure can be represented as a List where each
element of the List is a pair of a URL and a List of all the URLs that
include a link to that URL. The extract-links procedure from the previ-
ous exploration will be useful for determining the link targets of a given
URL.

&

Define a procedure that takes as input the output of web-link-graph
and outputs a preliminary ranking of each page that measures the num-
ber of other pages that link to that page.

C. Refine your page ranking procedure to weight links from highly-
ranked pages more heavily in a page’s rank by using a algorithm.

o

Come up with a cool name, set up your search engine as a web
service, and attract more than 0.001% of all web searches to your site.

|
Exploration 9.3: Historical Histograms

The site http://www.speechwars.com provides an interesting way to view
political speeches by looking at how the frequency of the use of different
words changes over time. For example, we can see that “computer” was
first used in a state of the union speech by Jimmy Carter in 1981, and used
five times by Bill Clinton, but not (yet) by any other president. Use the
index-histogram procedure to build a historical histogramming program. It
could take as input a List of indexes ordered by time, and a target word,
and output a List showing the number of occurrences of the target word in
each of the indexes. You could use your program to analyze how Shake-
speare’s word use is different in tragedies and comedies, how language on
the web has changed over time (see http://www.archive.org for a way to ob-
tain snapshots of web pages at particular times in the past), or how some
other interesting set of documents evolved over time.

9.3 The Story So Far

Chapters 1-9 have introduced several of the most important concepts in
computing. Much of what we have seen so far (and much of all of computer
science) stems from the three powerful ideas introduced in Section 1.4: re-
cursive definitions, higher order procedures, and abstraction. Here, we re-
cap these ideas, review the many forms in which these ideas have appeared
so far, and preview how they will recur later.

246 9.3. The Story So Far

Recursive definitions. A recursive definition defines something in terms of
a smaller instance of itself and a base case. All interesting languages in-
volve some recursive definitions, since this is the way to produce infinitely
many different surface forms from a finite number of rules. Nearly all of
the interesting procedures in this book are recursively defined. Datatypes
can also be defined recursively, for example a List is either null or a Pair
whose second cell is a List. In Part III, we will see many more recursive
definitions, and extend the notion of recursive definitions to the language
interpreter itself.

Higher order procedures. A procedure defines a precise sequence of steps.
Procedures can take inputs that specialize the steps they produce to a par-
ticular instance of a problem. Procedures can be passed as inputs to other
procedures to enable one procedure to do many different things, and can
be produced as outputs of a procedure. In Part III, we will change the
language evaluation rules themselves, and see how different evaluation
rules enable different ways of expressing procedures. In Part IV, we will
extend the notion of procedure to allow a procedure input that can describe
any computing machine. Making the input to a procedure a description of
an arbitrary computing machine enables us to understand deep properties
about what problems can and cannot be solved by mechanical computing.

Abstraction. We use abstraction to represent many different things with
one thing so that it is easier to understand and reason about designs. We
have seen many different types of abstraction so far: the digital abstrac-
tion uses a continuous range of voltages to represent just two values; pro-
cedural abstraction defines a procedure using a small amount of code to
produce many different processes; and data abstraction hides how data is
represented so programmers can focus on what you can do with the data
instead of the details of how it is represented. The asymptotic operators
used to describe running times are also a kind of abstraction—they allow
us to represent the set of infinitely many different functions with a com-
pact notation. In Part III, we will see many more examples of procedural
abstraction and data abstraction; we will also develop object abstractions
where code and data are packaged into one entity.

Reasoning about computing. The focus of Part II has been on predict-
ing properties of procedures, in particular how their running time scales
with the size of their input. With the analysis tools from Chapters 6-38, it is
possible to analyze the running time of any procedure.

In Part IV, we consider a deeper problem: what is the running time of the
fastest possible algorithm that solves a given problem. Exploring this will
allow us to understand what problems can realistically be solved by com-
puters, and what problems it is infeasible to solve with even much more

Chapter 9. Sorting and Searching 247

powerful computers than we have today.

As inventor of Quicksort, Sir Tony gets the last word:

I quickly learned that the characteristic of a good course lasting one
term is that after the first half of the course, the students just can’t see
what it is about at all, but at the end of the course they can’t see what
they found difficult anymore. So you have to choose a fixed time frame,
and if you don’t have that initial confusion and doubt you're probably
not teaching things that are stretching your students enough.

Tony Hoare, Charles Babbage Institute Interview, July 2002

We've covered a lot of material! Don’t despair if it doesn’t all make sense
yet. The same concepts will recur frequently in the remainder of this book,
and it takes lots of practice and many years to fully understand the impli-
cations of recursive definitions, higher order procedures, and abstraction.

