Time

Time makes more converts than reason.
Thomas Paine

The previous chapter introduced notations for conveniently describing the
asymptotic growth rates of functions. Chapter 6 introduced the Turing Ma-
chine model and argued that it can simulate any reasonable computer. In
this chapter, we combine the computing model with the asymptotic opera-
tors to reason about the running time of procedures.

The first section of this chapter explains how to measure input sizes and
running times. Section 8.2 provides examples of procedures with different
growth rates. The growth rate of a procedure’s running time gives us an
understanding of how the running time increases as the size of the input
increases. In the next chapter, we provide an extended example.

8.1 Measuring Running Time

To understand the growth rate of a procedure’s running time, we need a
function that maps the size of the inputs to the procedure to the amount of
time it takes to evaluate the application. First we consider how to measure
the input size; then, we consider how to measure the running time. In
Section 8.1.3 we consider which input of a given size should be used to
reason about the cost of applying a procedure.

8.1.1 Input Size

Procedure inputs may be many different types: Numbers, Lists of Num-
bers, Lists of Lists, Procedures, etc. Our goal is to characterize the input
size with a single number that does not depend on the types of the input.

We use the Turing machine to model a computer, so the way to measure
the size of the input is the number of characters needed to write the input

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

188 8.1. Measuring Running Time

on the tape. The characters can be from any fixed-size alphabet, such as the
ten decimal digits, or the letters of the alphabet. As we saw in Chapter 1,
we can use a sequence of bits to uniquely represent a member of any finite
set.

The number of different symbols in the tape alphabet does not matter for
our analysis, since we are concerned with orders of growth, not with abso-
lute values. Within the O, (), and © operators, a constant factor does not
matter. For example, @(n) defines exactly the same set as @(17n + 523).
This means whether we use an alphabet with two symbols or an alphabet
with 256 symbols, the effective input size is not impacted; with two sym-
bols the input may be 8 times as long as it is with a 256-symbol alphabet,
but the constant factor of 8 does not matter in the asymptotic operator.

Thus, we measure the size of the input as the number of symbols required
to write the number on a Turing Machine input tape. To figure out the input
size of a given type, we need to think about how many symbols it would
require to write down inputs of that type.

Booleans. There are only two Boolean values: true and false. Hence, we
can encode each value using a single symbol. The length of a Boolean input
is fixed.

Numbers. Using the decimal number system (that is, 10 tape symbols), we
can write a number of magnitude n using log,, n digits. Using the binary
number system (that is, 2 tape symbols), we can write it using log, n digits.
Withing the asymptotic operators, the base of the logarithm does not mat-
ter (as long as it is a constant). We can see this from the argument above —
changing the number of symbols in the input alphabet changes the input
length by a constant factor which has no impact within the asymptotic op-
erators. Another way to see this is to use the formula for change logarithm
bases:

1
log, x = @ -log, x

Changing the base of the logarithm multiplies the value by a constant

1
log, b’
factor if both logarithm bases are constants.

Lists. If the input is a List, the size of the input is related to the number
of elements in the list. If each element is a constant size (for example, a
list of numbers where each number is between 0 and 100), then the size of
the input list is some constant multiple of the number of elements in the
list. Hence, the size of an input that is a list of n elements is cn for some
constant ¢. Since @(cn) = O(n), the size of a List input is @(n) where 7 is
the number of elements in the List. If List elements can vary in size, then
we need to account for that in the input size. For example, suppose the

Chapter 8. Time 189

input is a List of Lists, where there are n elements in each inner List, and
there are n List elements in the main List. Then, there are 12 total elements,
so the input size is in @ (n?).

8.1.2 Running Time

As discussed in Section 7.1, timing the actual time of particular executions
of a procedure does not, by itself, provide a very useful way to understand
important properties of the cost of a procedure. Instead, we want a measure
of the running time of a procedure that satisfies two properties: (1) it should
be robust to ephemeral properties of a particular execution or computer,
and (2) it should provide insights into how long it will take to evaluate the
procedure on a wide range of inputs.

To estimate the running time of an evaluation, we need to consider the
number of steps required to perform the evaluation. The actual number of
steps depends on the details of how much work can be done on each step.
If we count instructions on a particular processor, the amount of work that
can be done in one instruction varies. Further, not all instructions take the
same amount of time of time to execute. Even the same simple instruc-
tion, such as reading the value in some memory location, may take vastly
different amounts of time depending on the state of the machine.!

When we analyze procedures, however, we usually don’t want to deal with
these details. Instead, what we care about is how the running time changes
as the input size increases. This means we can count anything we want as a
“step” as long as each step is the approximately same size (that is, the time
a step requires does not depend on the size of the input).

The clearest and simplest definition of a step is to use one Turing Machine
step. We have a precise definition of exactly what a Turing Machine can do
in one step: it can read the symbol in the current square, write a symbol
into that square, transition its internal state number, and move one square
to the left or right. Counting Turing Machine steps is very precise, but
difficult because we do not usually start with a Turing Machine description
of a procedure and creating one could be tedious.

Instead, we can usually reason directly from a Scheme procedure (or any
precise description of a procedure) using larger steps. As long as we can
claim that whatever we consider a step could be simulated using a con-
stant number of steps on a Turing Machine, our larger steps will produce

11f the same memory location has been read recently, it is likely to be available in a
memory cache that is built-in to the processor, so the access time is very quick. If it has not
been read recently, it may take several thousand times as long to read it.

190 8.1. Measuring Running Time

the same answer within the asymptotic operators. One possibility when
we are analyzing a Scheme procedure is to count the number of times an
evaluation rule is used in an evaluation of an application of the procedure.
The amount of work in each evaluation rule may vary slightly (for exam-
ple, the evaluation rule for an if-expression seems more complex than the
rule for a primitive) but does not depend on the input size.

Hence, it is reasonable to assume all the evaluation rules to take constant
time. This does not include any additional evaluation rules that are needed
to apply one rule. For example, the evaluation rule for application expres-
sions includes evaluating every subexpression. Evaluating an application
constitutes one work unit for the application rule itself, plus all the work
required to evaluate the subexpressions. In cases where the bigger steps
are unclear, we can always return to our precise definition of a step as one
step of a Turing Machine.

8.1.3 Worst Case Input

A procedure may have different running times for inputs of the same size.
One example is this procedure that takes a List as input and outputs the
first positive number in the list:

(define (list-first-pos p)
(if (null? p)
(error "No positive element found™")
(if (> (car p) 0)
(car p)
(list-first-pos (cdr p)))))

If the first element in the input list is positive, evaluating the application
of list-first-pos requires very little work. It is not necessary to consider any
other elements in the list if the first element is positive. On the other hand, if
none of the elements are positive, the procedure needs to test each element
in the list until it reaches the end of the list (where the base case reports an
error).

In our analyses we usually consider the worst case input. This is the input
of a given size for which evaluating the procedure takes the most work. By
focusing on the worst case input, we know the maximum running time for
the procedure. Without knowing something about the possible inputs to
the procedure, it is safest to be pessimistic about the input and not assume
any properties that are not known (such as that the first number in the list
is positive for the first-pos example).

In some cases, we need to also consider the average case input. Since most

Chapter 8. Time 191

procedures can take infinitely many inputs, this requires understanding
the distribution of possible inputs to determine an “average” input. This
is often necessary when we are analyzing the running time of a procedure
that uses another helper procedure. If we use the worst-case running time
for the helper procedure, we will grossly overestimate the running time of
the main procedure. Instead, since we know how the main procedure uses
the helper procedure, we can more precisely estimate the actual running
time by considering the actual inputs. We see an example of this in the
analysis of how the 4 procedure is used by list-length in Section 8.2.2.

8.2 Growth Rates

Our goal is to understand how the running time of an application of a pro-
cedure is related to the size of the input. To do this, we want is to devise a
function that predicts the running time of the procedure application. That
function should take as input a number that represents the size of the input,
and produces as output a number that gives the maximum number of steps
required to complete the evaluation on an input of that size. Symbolically,
we can think of this function as:

Number-Of-Steps p,ocedure: Number — Number

Because the output represents the maximum number of steps required, we
need to consider the worst-case input of the given size.

Because of all the issues with counting steps exactly, and the uncertainty
about how much work can be done in one step on a particular machine, we
cannot usually determine the exact function for Number-Of-Steps Procedure
Instead, we characterize the running time of a procedure with a set of func-
tions produce by an asymptotic operator. Inside the O, (), and ©, the ac-
tual time needed for each step does not matter since the constant factors are
hidden by the operator; what matters is how the number of steps required
grows as the size of the input grows.

Hence, we will characterize the running time of a procedure using a set of
functions produced by one of the asymptotic operators. The ® operator
provides the most information. Recall that O(f) is the set of functions that
grow no faster than f, Q(f) is the set of functions that grow no slower than f,
and O(f) is the set of functions that grow as fast as f. Since O(f) is the in-
tersection of O(f) and Q(f), knowing that the running time of a procedure
is in @(f) for some function f provides much more information than just
knowing it is in O(f) or just knowing that it is in Q(f). Hence, our goal is

constant time

192 8.2. Growth Rates

to characterize the running time of a procedure using the set of functions
defined by ©(f) of some function f.

The rest of this section provides examples of procedures with different
growth rates, from slowest (no growth) through increasingly rapid growth
rates. The growth classes described are important classes that are com-
monly encountered when analyzing procedures, but these are only exam-
ples of growth classes. Between each pair of classes described here, there
are an unlimited number of different growth classes.

8.2.1 No Growth: Constant Time

If the running time of a procedure does not increase when the size of the
input increases, it means the procedure must be able to produce its output
by looking at only a constant number of symbols in the input.

Procedures whose running time does not increase with the size of the input
are known as constant time procedures. Their running time is in O(1) — it
does not grow at all. By convention, we use O(1) instead of ®(1) to de-
scribe constant time. Since there is no way to grow slower than no growth,
O(1) and ©(1) are equivalent.

We cannot do much in constant time, since we cannot even examine the
whole input. A constant time procedure must be able to produce its output
by examining only a fixed-size part of the input. Recall that the input size
measures the number of squares needed to represent the input. A constant
time procedure can look at no more than C squares on the tape where C is
some constant. If the input is larger than C, a constant time procedure can
not even read parts of the input.

List procedures. An example of a constant time procedure is the built-
in procedure car. When car is applied to a non-empty list, it evaluates to
the first element of that list. No matter how long the input list is, all the
car procedure needs to do is extract the first component of the list. So, the
running time of car is in O(1).2

Other built-in procedures that involve lists and pairs that have running
times in O(1) include cons, cdr, null?, and pair?. None of these procedures
need to examine more than the first pair of the list.

2Since we are speculating based on what car does, not examining how car a particular
Scheme interpreter actually implements it, we cannot say definitively that its running time
is in O(1). It would be rather shocking, however, for an implementation to implement
car in a way such that its running time that is not in O(1). The implementation of scar in
Section 5.2.1 is constant time: regardless of the input size, evaluating an application of it
involves evaluating a single application expression, and then evaluating an if-expression.

Chapter 8. Time 193

Boolean procedures. All sensible procedures that have only Booleans
as inputs are constant time. This is because the size of a Boolean input
is a constant. Since there is no way to grow the size of a Boolean input,
the running time of a procedure that takes only Boolean inputs should not
grow either. For example, the logical-and procedure from Chapter 6 takes
two Boolean inputs. Evaluating it involves evaluating one if-expression, so
the running time is constant.

Number procedures. Most procedures that take numbers are inputs are
not constant time, since most operations on numbers depend on the whole
number. For example, there is no way to correctly add two numbers with-
out completely examining all the digits in both numbers. There are some
operations we can do on numbers in constant time, however.

For example, the zero? procedure takes a number as its input and outputs a
Boolean indicating whether or not the input number is zero. Whether it is
possible to implement zero? in constant time depends on how numbers are
represented. If numbers are represented with no leading zeros (that is, 0043
is not a valid number), then all zero? needs to do is look at the first digit, so
it can be done in constant time. We will more examples in the next section
involving arithmetic operations where one of the numbers is a constant.

8.2.2 Linear Growth

When the running time of a procedure increases by a constant amount
when the size of the input grows by one, the running time of the proce-
dure grows linearly with the input size. If the input size is n, the running
time is in ©(n). If a procedure has running time in ©(n), doubling the size
of the input will approximately double the execution time.

Many procedures that take a List as input have linear time growth. A pro-
cedure that does something that takes constant time with every element in
the input List, has running time that grows linearly with the size of the in-
put since adding one element to the list increases the number of steps by
a constant amount. Next, we examine three example list procedures, all of
which have running times that scale linearly with the size of their input.

Example 8.1: Append. Consider the list-append procedure (from Exam-
ple 5.6):

(define (list-append p q)
(if (null? p) q
(cons (car p) (list-append (cdr p) q))))

We want to understand how the running time of list-append scales with the

linearly

194 8.2. Growth Rates

size of its input. Since list-append takes two inputs, we need to be careful
about how we refer to the input size. We use n, to represent the number of
elements in the first input, and 7, to represent the number of elements in
the second input.

To analyze the running time of list-append, we examine its body which is
an if-expression. The predicate expression applies the null? procedure. As
we argued in the previous section, null? can be applied in constant time
since the effort required to determine if a list is null does not depend on
the length of the list. When the predicate expression evaluates to true, the
alternate expression is just g, which can also be evaluated in constant time.

Next, we consider the alternate expression. It includes a recursive appli-
cation of list-append. Hence, the running time of the alternate expression
is the time required to evaluate the recursive application plus the time re-
quired to evaluate everything else in the expression. The other expressions
to evaluate are applications of cons, car, and cdr, each of which is a constant
time procedure.

So, we could express the total running time as,
R”””ing'Timelist—append(”Pf ng) =C+ Running—Timelist_append(np —1,ng)

where C is some constant (that is, the time for all the operations besides the
recursive call does not depend on the length of any of the inputs). Note
that the value of 1, does not matter, so we can simplify this to:

R”””mg'Timelist—append(”r’) =C+ Running—Timelist_append(np -1).

This indicates that the running time to evaluate an application of list-append
when the first input is a list with 7, elements is the time required to evalu-
ate list-append on an input with one fewer element plus some constant.

This does not yet provide a useful characterization of the running time of
list-append though, since it is a circular definition. To make it a recursive
definition, we need a base case. The base case for the running time defini-
tion is the same as the base case for the procedure: when the input is null.
For the base case, the running time is constant. So, we can also define:

R”””i”g'Timelist—append(O> =Cy
where Cj is some constant (not necessarily the same as C).

To better characterize the running time of list-append, we want a closed form
solution. For a given input n, Running-Time(n) is C+C+C+C+ ...+
C + Co where there are n — 1 of the C terms in the sum. This simplifies to
(n—1)C+ Cy =nC—C+ Cy = nC + C,. We do not know what the values

Chapter 8. Time 195

of C and C; are, but since we use the asymptotic notations to describe the
running time, it doesn’t matter. The important thing is that the running
time scales linearly with the value of its input. Thus, the running time of
list-append is in @ (n,) where n,, is the number of elements in the first input.

Usually, we do not need to reason at quite this low a level. Instead, to
analyze the running time of a recursive procedure it is enough to determine
the amount of work involved in each recursive call (excluding the recursive
application itself) and multiply this by the number of recursive calls. For
this example, there are 1, recursive calls since each call reduces the length
of the p input by one until the base case is reached. Each call involves
only constant-time procedures (other than the recursive application), so the
amount of work involved in each call is constant. Hence, the running time
is in @(1n,). This is equivalent to stating that the running time for the list-
append procedure scales linearly with the length of the first input list.

Example 8.2: Length. Consider the list-length procedure from Chapter 5:

(define (list-length p)
(if (null? p)
0
(4 1 (list-length (cdr p)))))

This procedure makes one recursive application of list-length for each ele-
ment in the input p. If the input has n elements, there will be n + 1 total
applications of list-length to evaluate (one for each element, and one for the
null). So, the total work is in ®(n - work for each recursive application).

To determine the running time, we need to determine how much work is
involved in each application. Evaluating an application of list-length con-
sists of evaluating its body, which is an if-expression. To evaluate the if-
expression, the predicate expression, (null? p), must be evaluated first. This
requires constant time since the null? procedure has constant running time
(see Section 8.2.1).

If the predicate expression evaluates to true, the consequent expression
must be evaluated. It is the primitive expression, 0, which can be evalu-
ated in constant time.

When the predicate expression evaluates to false, the alternate expression,
(4 1 (list-length (cdr p))) is evaluated. We analyze the running time of evalu-
ating this expression without including the recursive list-length application.
The reason we do not include this know is that we know there are nn + 1 to-
tal applications of length to evaluate. Once we know the running time for
each application (other than the recursive application itself), we can just
multiply this by the number of recursive calls to get the total running time.

Worst Case

196 8.2. Growth Rates

The remaining work is evaluating (cdr p) and evaluating the + application.
The cdr procedure is constant time. Analyzing the running time of the +
procedure application is more complicated.

Since + is a built-in procedure, we need to think about how it might be
implemented. Following the elementary school addition algorithm (from
Section 6.2.3), we know we can add any two numbers by walking down
the digits. The work required for each digit is constant; we just need to
compute the corresponding result and carry bits using a simple formula or
lookup table. The number of digits to add is the maximum number of digits
in the two input numbers. Thus, if there are b digits to add, the total work is
in (D). In the worst case, we need to look at all the digits in both numbers.
In general, we cannot do asymptotically better than this, since adding two
arbitrary numbers might require looking at all the digits in both numbers.

But, in the list-length procedure the + is used in only a very limited way:
(4 1 (list-length (cdr p))). One of the inputs is always 1. We might be able
to add 1 to a number without looking at all the digits in the number. Recall
the addition algorithm: we start at the rightmost (least significant) digit,
add that digit, and continue with the carry. If one of the input numbers is
1, then once the carry is zero we know now of the more significant digits
will need to change. In the worst case, adding one requires changing every
digit in the other input. For example, (4 99999 1) is 100000. In the best case
(when the last digit is below 9), adding one requires only examining and
changing one digit.

Figuring out the average case is more difficult, but necessary to get a good
estimate of the running time of list-length. We assume the numbers are
represented in binary, so instead of decimal digits we are counting bits (this
is both simpler, and closer to how numbers are actually represented in the
computer). Approximately half the time, the least significant bit is a 0, so
we only need to examine one bit. When the last bit is not a 0, we need to
examine the second least significant bit (the second bit from the right): if it
is a 0 we are done; if it is a 1, we need to continue. So, we need to examine
two or more bits in the case where the least significant bitisa 1.

Thus, we always need to examine one bit, the least significant bit. Half
the time we need to also examine the second least significant bit. Of those
times, half the time we need to continue and examine the next least signif-
icant bit. This continues through the whole number. Thus, the expected
number of bits we need to examine is,

1+;<1+;(1+;(1+;(1+...)))>

where the number of terms is the number of bits in the input number, b.

Chapter 8. Time 197

Simplifying the equation, we get:
I U I S
2 4 8 16 7 ob

No matter how large b gets, this value is always less than 2. So, on average,
the number of bits to examine to add 1 is constant: it does not depend
on the length of the input number. Although adding two arbitrary values
cannot be done in constant time, adding 1 to an arbitrary value can be done
in constant time.

This result generalizes to addition where one of the inputs is any constant.
One way to see this is that adding any constant C to a number 7 is equiva-
lent to adding one C times. Since adding one is a constant time procedure,
adding one C times can also be done in constant time for any constant C.
Another way to see this is to note that the constant C can be written in
log, C bits. Hence, we always need to look at the rightmost log, C bits of
the input number, but only need to look beyond those bits when there are
carries. The frequency of carries after the next most significant bit is the
same as if we are adding 1. So, on average, we only need to look at a con-
stant number of bits to add a constant to any number.

Excluding the recursive application, the list-length application involves ap-
plications of two constant time procedures: cdr and adding one using +.
Hence, the total time needed to evaluate one application of list-length, ex-
cluding the recursive application, is constant. It does not depend on the
length of the input list.

There are n + 1 total applications of list-length to evaluate total, so the total
running time is ¢(n + 1) where ¢ is the amount of time needed for each
application. The set ®(c(n + 1)) is identical to the set ®@(n), so we can say
that the running time for the length procedure is in ©(n) where n is the
length of the input list.

Example 8.3: Accessing List Elements. Consider the list-get-element pro-
cedure from Example 5.3:

(define (list-get-element p n)
(if(=n1)
(car p)
(list-get-element (cdr p) (— n 1))))

The procedure takes two inputs, a List and a Number selecting the element
of the list to get. Since there are two inputs, we need to think carefully about
the input size. We can use variables to represent the size of each input, for
example Sp and s, for the size of p and n respectively. In this case, however,
we will see that only the size of the first input really matters.

198 8.2. Growth Rates

The procedure body is an if-expression. The predicate uses the built-in
= procedure to compare n to 1. The worst case running time of the =
procedure is linear in the size of the input: it potentially needs to look at
all bits in the input numbers to determine if they are equal. Similarly to +,
however, if one of the inputs is a constant, the comparison can be done in
constant time. To compare a number of any size to 1, it is enough to look
at a few bits. If the least significant bit of the input number is not a 1, we
know the result is false. If itis a 1, we need to examine a few other bits of the
input number to determine if its value is different from 1 (the exact number
of bits we need to look at depends on how numbers are represented in
more detail; if there are no leading zeros, which is not the case with most
computer representations, it would only be necessary to examine one more
bit). So, the = comparison can be done in constant time.

If the predicate is true, the base case applies the car procedure, which has
constant running time. The alternate expression involves the recursive
calls, as well as evaluating (cdr p), which requires constant time, and (—
n 1). The — procedure is similar to +: for arbitrary inputs, its worst case
running time is linear in the input size, but when one of the inputs is a con-
stant the running time is constant. This follows from a similar argument
to the one we used for the + procedure. To subtract a constant of length C
bits, we need to examine C bits of the input number, and further bits only
some of the time (Exercise 4 asks for a more detailed analysis of the run-
ning time of subtraction). So, the work required for each recursive call is
constant.

The number of recursive calls is determined by the value of n and the num-
ber of elements in the list p. In the best case, when #n is 1, there are no
recursive calls and the running time is constant. It does not depend on the
number of elements in the list, since the procedure only needs to examine
the first element. Each recursive call reduces the value passed in as n by 1,
so the number of recursive calls scales linearly with n (the actual number
is n — 1 since the base case is when n equals 1). But, there is a limit on the
value of n for which this is true. If the value passed in as n exceeds the
number of elements in p, the procedure will produce an error when it at-
tempts to evaluate (cdr p) for the empty list. This happens after s, recursive
calls, where s, is the number of elements in p. Hence, the running time of
list-get-element does not grow with the length of the input passed as n; after
the value of n exceeds the number of elements in p it does not matter how
much bigger it gets, the running time does not continue to increase.

Thus, the worst case running time of list-get-element grows linearly with the
length of the input list. Equivalently, the running time of list-get-element is
in ©(s,) where s, is the number of elements in the input list.

Chapter 8. Time 199

Exercise 8.1. Explain why the list-map procedure from Section 5.4.1 has
running time that is linear in the size of its List input. Assume the proce-
dure input has constant running time.

Exercise 8.2. Consider the list-sum procedure (from Example 5.2):

(define (list-sum p)
(if (null? p)
0
(+ (car p) (list-sum (cdr p)))))

What assumptions are needed about the elements in the list for the running
time to be linear in the number if elements in the input list?

Exercise 8.3. For the decimal six-digit odometer (shown in the picture on
page 196), we measure the amount of work to add one as the total number
of wheel digit turns required. For example, going from 000000 to 000001
requires one work unit, but going from 000099 to 000100 requires three
work units.

® PUBLIC COUNTER ;

a. What are the worst case inputs?

1wy
| T

b. What are the best case inputs?

. . . i
c. On average, how many work units are required for each mile? As-

sume over the lifetime of the odometer, the car travels 1,000,000 miles. Voting Machine Counter

d. Lever voting machines were used by the majority of American voters
in the 1960s, although they are not widely used today. Most level ma-
chines used a three-digit odometer to tally votes. Explain why candi-
dates ended up with 99 votes on a machine far more often than 98 or
100 on these machines.

Exercise 8.4. | ~| The list-get-element argued by comparison to +, that the —
procedure has constant running time when one of the inputs is a constant.
Develop a more convincing argument why this is true by analyzing the
worst case and average case inputs for —.

Exercise 8.5. Our analysis of the work required to add one to a number
argued that it could be done in constant time. Test experimentally if the
DrScheme + procedure actually satisfies this property. Note that one +
application is too quick to measure well using the time procedure, so you
will need to design a procedure that applies + many times without doing
much other work.

quadratically

200 8.2. Growth Rates

8.2.3 Quadratic Growth

If the running time of a procedure scales as the square of the size of the
input, the procedure’s running time grows quadratically. Doubling the size
of the input approximately quadruples the running time. The running time
is in @(n?) where 7 is the size of the input.

A procedure that takes a list as input has running time that grows quadrat-
ically if it goes through all elements in the list once for every element in the
list. For example, we can compare every element in a list of length n with
every other element using 7(n — 1) comparisons. This simplifies to n> — n,
but ®@(n% — n) is equivalent to ®(n?) since as 1 increases only the highest
power term matters (see Exercise 7.7).

Example 8.4: Reverse. Consider the list-reverse procedure defined in Sec-
tion 5.4.2:

(define (list-reverse p)
(if (null? p)
null
(list-append (list-reverse (cdr p)) (list (car p)))))

To determine the running time of list-reverse, we need to know how many
recursive calls there are and how much work is involved in each recursive
call. Each recursive application passes in (cdr p) as the input, so reduces the
length of the input list by one. Hence, applying list-reverse to a input list
with n elements involves 1 recursive calls.

The work for each recursive application, excluding the recursive call itself,
is applying list-append. The first input to list-append is the output of the
recursive call. As we argued in Example 8.1, the running time of list-append
is in ©(n,) where n, is the number of elements in its first input. So, to
determine the running time we need to know the length of the first input
list to list-append. For the first call, (cdr p) is the parameter, with length n —1;
for the second call, there will be n — 2 elements; and so forth, until the final
call where (cdr p) has 0 elements. So, the total number of elements in all of
these calls is:

(n=1)+mn—-2)+...+1+0.

The average number of elements in each call is approximately 5. Within
the asymptotic operators the constant factor of % does not matter, so the
average running time for each recursive application is in @ ().

There are n recursive applications, so the total running time of list-reverse is
n times the average running time of each recursive application: n - ®(n) =

Chapter 8. Time 201

@(n?). Thus, the running time is quadratic in the size of the input list.

Example 8.5: Multiplication. = Consider the problem of multiplying two
numbers. The elementary school long multiplication algorithm works by
multiplying each digit in b by each digit in a, aligning the intermediate
results in the right places, and summing the results:

ap—1 tet ai ap
X bnfl s bl bo
ap—1by - aibo aobo
ay—1by - a1by aoby
+ ay1by—1 -+ @by aoby—
Ton—1 on—2 cet T r3) r1 ro

If both input numbers have 1 digits, there are n? digit multiplications, each
of which can be done in constant time. The intermediate results will be n
rows, each containing 1 digits. So, the total number of digits to add is n%: 1
digit in the ones place, 2 digits in the tens place, ..., n digits in the 10m-1s o
place, ..., 2 digits in the 10>"~3s place, and 1 digit in the 10> ~2s place. Each
digit addition requires constant work, so the total work for all the digit
additions is in @(n?). Adding the work for both the digit multiplications
and the digit additions, the total running time for the elementary school
multiplication algorithm is quadratic in the number of input digits, ®(n?)
where 1 is the number if digits in the inputs.

This is not the fastest known algorithm for multiplying two numbers, al-
though it was the best algorithm known until 1960. In 1960, Anatolii Karat-
suba discovers a multiplication algorithm with running time in @(nl"gz 3).
Since log,3 < 1.585 this is an improvement over the ®(n?) elementary
school algorithm. In 2007, Martin Fiirer discovered an even faster algo-
rithm for multiplication.® It is not yet known if this is the fastest possible
multiplication algorithm, or if faster ones exist.

Exercise 8.6. Analyze the running time of the elementary school long
division algorithm.

3Martin Fiirer, Faster Integer Multiplication, ACM Symposium on Theory of Computing,
2007.

202 8.2. Growth Rates

Exercise 8.7. Define a Scheme procedure that multiplies two multi-digit
numbers (without using the built-in * procedure except to multiply single-
digit numbers). Strive for your procedure to have running time in ©(n)
where 7 is the total number of digits in the input numbers.

Exercise 8.8. Devise a multiplication algorithm that is faster than
Fiirer’s, or prove that no faster algorithm for general multiplication exists.

8.2.4 Polynomial Growth

A polynomial function is a function that is the sum of powers of one or more
variables multiplied by coefficients. For example,

aknk + ...+ a3n3 + a2n2 +ain+ag

is a polynomial where the variable is n and the coefficients are ag, a, ..., a.
Within the O, () and © operators, only the term with the largest exponent
matters. For high enough n, all the other terms become insignificant. An
easy way to see this is to observe that nkis n - nk=1. So, whatever the a;_;
coefficient is, once n > a;_; the value of n* > a;_,n*~1. So, the polynomial
above is in ®(n*) which is equivalent to @ (agn* + ... + azn® + ayn® + ajn +
ap) for all positive constants ao, . . ., a.

All of the slower growth rates in this section are polynomials: constant
growth is a polynomial where the highest exponent is 0, linear growth is a
polynomial where the highest exponent is 1, and quadratic grow is a poly-
nomial where the highest exponent is 2. We can have procedures where the
running time grows as a higher polynomial. The next example analyzes a
procedure whose running time grows cubically with the size of its input.

Example 8.6: Satisfying pair. The list-satisfying-pair procedure, defined
below, takes as inputs a test procedure and a list. The test procedure is a
procedure that takes two inputs and produces a Boolean value. If there
are any pairs of elements in the list for which the test procedure evaluates
to true, the output is a pair of two elements in the list for which the test
procedure evaluates to true. Otherwise, the output is false to indicate there
is no satisfying pair.

Here are some example evaluations:

> (list-satisfying-pair = (list 13246 1))
(1.1)

> (list-satisfying-pair = (list 1324 6 7))
false

Chapter 8. Time 203

> (list-satisfying-pair (lambda (a b) (= a (x b 2)))
(list2357 11 13))

false

> (list-satisfying-pair (lambda (a b) (= a (x b b)))
(list 345678910 11))

(9.3)

We can define list-satisfying-pair by using list-get-element to select elements
in turn to try all possible pairs.

(define (list-satisfying-pair cf p)
(define (list-satisfying-pair-iter i j)
(if (> i (list-length p))
false
(if (> j (list-length p))
(list-satisfying-pair-iter (+i1) 1)
(if (and (not (=1i7))
(cf (list-get-element p i) (list-get-element p f)))
(cons (list-get-element p i) (list-get-element p j))
(list-satisfying-pair-iter i (+ j 1))))))
(list-satisfying-pair-iter 1 1))

The inner definition defines the list-satisfying-pair-iter procedure that takes
two inputs, i and j, Numbers used to represent the indices of elements in the
list to compare. It also uses the two parameters to the outer list-satisfying-
pair procedure: cf, the Procedure used to test if a pair of inputs satisfy some
property, and p, the input List.

To check all possible pairs, we need to evaluate the test procedure for every
pair of values i and j that correspond to elements in the input list. We use
n to represent the number of elements in the input list. Since there are
n possible values for i and n possible values for j, this amounts to n? total
comparisons. The number of recursive calls to list-satisfying-pair-iter should
match this. The recursive definition is a bit complex since there are two
different recursive calls. The first base case is when i exceeds the length of
the input list. When this is true, it means all possible pairs have been tried
without finding a satisfying pair, so the output is false. The second base
case is when j, the second index, exceeds the length of the list. This happens
when the procedure has finished trying the comparison procedure with all
pairs for a given first element (the value of i). To continue, the recursive
call, (list-satisfying-pair-iter (+i 1) 1) passes in the next value for i and resets
the value for the j parameter to 1. This happens n times.

The other recursive call is done when (> j (list-length p)) evaluates to false:
(list-satisfying-pair-iter i (++ j 1)). The value passed in as i does not change,

204 8.2. Growth Rates

but the value passed as j increases by 1. Since j starts at 1, the number of
recursive calls required before the predicate is false is n. After these n calls,
the recursive call that increases i by 1 and resets j to 1 is used. Hence, the

total number of recursive calls is n2.

So, to determine the running time of list-satisfying-pair we need to estimate
the running time of each application of list-satisfying-pair-iter (excluding the
recursive call) and multiply that by n2. The worst (and most common)
path through list-satisfying-pair-iter is the path where the first two predicate
expressions are false, and the third one is true. Along this path, we need
to evaluate (> i (list-length p)), (> j (list-length p)), (and (not (= i7j)) (cf (list-
get-element p i) (list-get-element p j))), and (cons (list-get-element p i) (list-get-
element p j)). We consider the running time of each expression in turn; the
total running time for each list-satisfying-pair-iter application is the sum of
the running times of each expression.

The first two expressions use the > procedure to compare the index value to
the length of the list. The running time of [ist-length is linear in the number
of elements in the input list, so this involves ©(n) work. The less than
comparison can be done by examining the bits of the input numbers from
most-significant to least-significant bit. In the worst case, all bits in the
input numbers need to be examined. This occurs when all the bits are the
same, or all the bits except the last bit are the same. The value of the first
input is some number between 1 and 7 + 1; the value of the second input
is always n. Hence, the size of the input to < is ©(logn) and the running
time for evaluating each > expression is in @(logn). The total running
time for evaluating (> i (list-length p)) is ©(n + logn) which is equivalent
to ©(n) since as n increases, the log n term becomes much smaller than n
(thatis, 1.1n > (n +logn) for n > 100). The running time for the second
comparison expression is also in ().

The third expression involves applications of the Boolean procedure not,
which is constant time since it takes Boolean inputs; the comparison pro-
cedure, ¢f, which we assume is constant time; and two applications of list-
get-element, which we analyzed in Example 8.3 to have running time that
is linear in the number of elements in the input List in the worst case. The
running time for list-get-element scales linearly with the value of the sec-
ond input, up to the length of the first input. On average, the values of i
and j will be the average length of the list = n/2, so the expected running
time of each call is also in ©(#n). This means the total running time for list-
satisfying-pair is in @ (n®) since there are ®(n?) recursive calls, and each one
has running time in ©(n). So, the running time for this expression is in
O(1)4+0(1)+0(n)+06(n) =0(n).

The fourth expression, (cons (list-get-element p 1) (list-get-element p j)), also in-

Chapter 8. Time 205

volves two applications of list-get-element and the constant time procedures
cons. Hence, its running time is in ©(n).

The total running time to evaluate all four expressions is the sum of their
running times: ©(n) + ©(n) + ©(n) + O(n), which is equivalent to @(n).
Since there are n? recursive calls, the total running time for list-satisfying-
pair is in n? - @(n) = O(n?).

Exercise 8.9. The provided definition of list-satisfying-pair has cubic
running time, but it is possible to implement a procedure with the same
behavior that has running time in @(n?) where n is the number of ele-
ments in the input list. Write a definition of list-satisfying-pair that has
quadratic running time, and explain why the running time of your pro-
cedure is quadratic.

8.2.5 Exponential Growth

If the running time of a procedure scales as some power of the size of the
input, the procedure’s running time grows exponentially. When the size of
the input increases by one, the running time is multiplied by some constant
factor. The growth rate of a function whose output is multiplied by w when
the input size, n, increases by one is w".

A common instance of exponential growth is when the running time is in
©(2"). This occurs when the running time doubles when the input size
increases by one. Exponential growth is very fast — if our procedure has
running time that is exponential in the size of the input, it is not feasible to
evaluate applications of the procedure on large inputs.

For a surprisingly large number of interesting problems, the best known
algorithm has exponential running time. Examples of problems like this in-
clude finding the best route between two locations on a map (the problem
mentioned in Chapter 4), the pegboard puzzle from Chapter 5, solving gen-
eralized versions of most other games such as Suduko and Minesweeper,
and finding the factors of a number. Whether or not it is possible to de-
sign faster algorithms that solve these problems is the most important open
problem in computer science, which we will return to in Chapter 16.

Next, we provide one example of a procedure that has exponential running
time. In this case, we know there is no faster than exponential solution,
since the size of the output is exponential in the size of the input. Since
the most work a Turing Machine can do in one step is write one square, the
size of the output provides a lower bound on the running time of the Turing
Machine. For example, if the size of the output to a problem is exponential
in the size of its input, the fastest possible procedure for that problem has

206 8.2. Growth Rates

at least exponential running time. This doesn’t mean that such a procedure
exists, just that it is not possible to find a faster one since just writing out
the output itself requires exponential running time.

Example 8.7: Power Set. In mathematics, the power set of a set S is the
set of all subsets of S. For example, the power set of {1,2,3} is

{1 {1 {21 {31, {1,2},{1,3},{2,3},{1,2,3}}

The number of elements in the power set of § is 2/°! (where |S| is the number
of elements in the set S).

Here is a procedure that takes a list as input, and produces as output the
power set of the elements of the list (unlike mathematical sets we allow
duplicate values in our input list, and the resulting list-sets):

(define (list-powerset s)
(if (null? s)
(list null)
(list-append (list-map (lambda (t) (cons (car s) t)) (list-powerset (cdr s)))
(list-powerset (cdr s)))))

The list-powerset procedure produces a List of Lists. Hence, for the base
case, instead of just producing null, it produces a list containing a single
element, null. In the recursive case, we can produce the power set by ap-
pending the list of all the subsets that include the first element, with the
list of all the subsets that do not include the first element. For example, the
powerset of {1,2,3} is found by finding the powerset of {2,3}, which is {{},
{2}, {3}, {2, 3}}, and taking the union of that set, and the set of all elements
in that set unioned with {1}.

An application of list-powerset involves applying list-append, and two recur-
sive applications of (list-powerset (cdr s)). Increasing the size of the input list
by one, doubles the total number of applications of list-powerset. This is the
case because to evaluate (list-powerset s), we need to evaluate (list-powerset
(cdr s)) twice. So, the number of applications of list-powerset is 2" where n is
the length of the input list.*

The body of list-powerset is an if-expression. The predicate is a constant-
time procedure, null?. The consequent expression, (list null) is also constant
time. The alternate expression is an application of list-append. From Exam-
ple 8.1, we know the running time of list-append is ®(n,) where n,, is the
number of elements in its first input. The first input is the result of applying

4Careful readers will note that it is not really necessary to perform this evaluation twice,
since we could do it once and reuse the result. Later, we explain how to avoid needing two
evaluations of (list-powerset (cdr s)).

Chapter 8. Time 207

list-map to a procedure and the List produced by (list-powerset (cdr s)). The
length of the list output by list-map is the same as the length of its input, so
we need to determine the length of (list-powerset (cdr s)).

We use 1, to represent the number of elements in s. The length of the input
list to map is the number of elements in the power set of a size n; — 1 set:
21~ But, for each application, the value of n; is different. Since we are
trying to determine the total running time, we can do this by thinking about
the total length of all the input lists to list-map over all of the list-powerset.
In the input is a list of length n, the total list length is:

on=lgpon=2 4 42l 400

which is equal to 2" — 1. So, the running time for all the list-map applica-
tions is in @(2").

The analysis of the list-append applications is similar. The length of the first
input to list-append is the length of the result of the list-powerset application,
so the total length of all the inputs to append is 2".

Other than the applications of list-map and list-append, the rest of each list-
powerset application requires constant time. So, the running time required
for 2" applications is in ©(2"). The total running time for list-powerset is
the sum of the running times for the list-powerset applications, in @(2"); the
list-map applications, in ©(2"); and the list-append applications, in ©(2").
Hence, the total running time is in ©(2").

8.2.6 Faster than Exponential Growth

We have already seen an example of a procedure that grows faster than ex-
ponentially in the size of the input: the fibo procedure at the beginning of
this chapter! Evaluating an application of fibo involves ®(¢") recursive ap-
plications where 7 is the value of the input parameter. The size of a numeric
input is the number of digits needed to express it, so the value 1 can be as
high as 10? — 1 where d is the number of digits. Hence, the running time of

the fibo procedure is in ®((p10d). This is why we are still waiting for (fibo 60)
to finish evaluating.

8.2.7 Non-terminating Procedures

All of the procedures so far in the section are algorithms: they may be slow,
but they are guaranteed to always finish. Some procedures never termi-
nate. For example,

208 8.2. Growth Rates

(define (run-forever) (run-forever))

defines a procedure that never finishes. Its body calls itself, never making
any progress toward a base case. The running time of this procedure is
effectively infinite since it never finishes.

Exercise 8.10. Analyze the running time of the intsto procedure (from Ex-
ample 5.8):

(define (intsto n)
(if (= n 0) null (list-append (intsto (— n 1)) (list n))))

Be careful to describe the running time in terms of the size (not the magni-
tude) of the input.

Exercise 8.11. Analyze the running time of the factorial procedure (from
Example 4.1):

(define (factorial n)
(if (=n 0) 1 (* n (factorial (— n 1)))))

Exercise 8.12. Analyze the running time of the board-replace-peg procedure
(from Example 5.11):

(define (row-replace-peg pegs col val)
(if (=col 1)
(cons val (cdr pegs))
(cons (car pegs) (row-replace-peg (cdr pegs) (— col 1) val))))

(define (board-replace-peg board row col val)
(if (=row 1)
(cons (row-replace-peg (car board) col val) (cdr board))
(cons (car board) (board-replace-peg (cdr board) (— row 1) col val))))

Exercise 8.13. [x] Find and correct at least one error in the Orders of Growth
section of the Wikipedia page on Analysis of Algorithms (http://en.wikipedia.
org/wiki/Analysis_of_algorithms). This is rated as [x] now (9 February
2009), since the current entry contains many fairly obvious errors. Hope-
fully it will soon become a challenge, and perhaps, eventually will
become impossible!

Chapter 8. Time 209

8.3 Summary

Because the speed of computers varies, and the exact time required for a
particular application depends on many details, the most important prop-
erty to capture is how the amount of work required to evaluate the proce-
dure scales with the size of the input. The asymptotic operator for measur-
ing orders of growth provide a convenient way of understanding the cost
involved in evaluating an application of a procedure.

Procedures that can produce an output only touching a fixed amount of
input regardless of the input size have constant (O(1)) running times. Pro-
cedures whose running time increases by a constant amount when the
input size increases by one have linear (in ®(n)) running times. Proce-
dures whose running time quadruples when the input size doubles have
quadratic (in @(n?)) running times. Procedures whose running time is
multiplied by a constant factor when the input size increases by one have
exponential (in @(k") for some constant k) running times. If a procedure
has exponential running time, it can only be evaluated for small inputs.

The asymptotic analysis, however, must be considered carefully. For large
enough inputs, a procedure with running time in ®(n) is always faster than
a procedure with running time in ®(n2). But, for an input of a particular
size, the ®(n?) procedure may be faster. The asymptotic operators pro-
vide useful ways for reasoning about the running times of procedures, but
they hide many details including constant factors. Without knowing the
constants that are hidden by the asymptotic operators, there is no way to
acurately predict the actual running time on a given input.

In this chapter, we have focused on analyzing the running time of a known
procedure. A deeper question concerns the running time of the best possi-
ble procedure that solves a particular problem. We explore that question in
Chapter 16.

