Cost

A LISP programmer knows the value of everything, but the cost of nothing.
Alan Perlis

I told my dad that someday I'd have a computer that I could write programs
on. He said that would cost as much as a house. I said, “Well, then I'm going
to live in an apartment.”

Steve Wozniak

In this chapter, we begin our exploration of how to predict the cost of eval-
uating a given expression. Predicting the cost of executing a procedure has
practical value (for example, we can determine whether it is worth waiting
for a computer to produce a response, or estimate how large a computer
we need to solve a given problem instance), but also provides deep insights
into the nature of procedures and problems.

The most commonly use cost metric is the amount of time it will take for an
execution to complete. Other measures of cost include the amount of mem-
ory the processor needs and the amount of energy consumed. Indirectly,
these costs can often be translated into money: the value of the time for
the person waiting for the program to produce an answer, the number of
transactions per second a service can support, or the price of the computer
needed to solve a problem.

In this chapter, we introduce tools for understanding the cost of evaluating
a procedure application. Our goal is to reason about the cost of a procedure
in a way that does not depend on ephemeral details of a particular com-
puter. From the Turing Machine model in the previous chapter, we know
that a simple model computer is enough to execute any algorithm, and that
our simple model can simulate any reasonable computer using a constant
multiple of the number of steps. Hence, the tools we use to measure cost
are robust to details that would be altered by using a different computer.
The following chapter uses these tools to characterize procedures and make
predictions about how long evaluations of different applications of those
procedures will take.

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009




170 7.1. Measuring Cost

7.1 Measuring Cost

The most obvious way to measure the cost of evaluating a given expression
is to just evaluate it. If we are primarily concerned with time, we could just
use a stopwatch to measure the time it takes to complete the evaluation.
For more accurate results, we can use the built-in (time Expression) special
form to find the processor time used to evaluate the expression.1 Evaluat-
ing (time Expression) produces the value of the input expression, but also
prints out the time required to evaluate the expression (shown in our ex-
amples using slanted font).

The output printed by time contains three values:

* cpu time — The time in milliseconds the processor ran to evaluate the
expression. CPU is an abbreviation for “central processing unit”, the
computer’s main processor.

¢ real time — The actual time in milliseconds it took to evaluate the
expression. Since other processes may be running on the computer
while this expression is evaluated, the real time may be longer than
the CPU time, which reflects just the amount of time the processor
was working on evaluating this expression.

¢ gc time — The time in milliseconds the interpreter spent on garbage
collection to evaluate the expression. Garbage collection is used to
reclaim memory that is storing data that will never be used again.

For example, using the definitions from Chapter 5,

(time (solve-pegboard (board-remove-peg (make-board 5)
(make-position 1 1))))

produces:
cpu time: 141797 real time: 152063 gc time: 765
followed by the output:

((Move (Position 3 1) (Direction —10))...)

IThe time construct is not part of the standard Scheme language, but is an extension
provided by DrScheme. It must be a special form, since the expression is not evaluated
before entering time as it would be with the normal application rule. If it were evaluated
normally, there would be no way to time how long it takes to evaluate, since it would have
already been evaluated before time is applied.



Chapter 7. Cost 171

From the printed output generated by time, we see the real time is 152 sec-
onds, so this evaluation took just over two and a half minutes. Of this time,
the evaluation was using the CPU for 142 seconds, and the garbage collec-
tor ran for less than one second.

Here are two more examples:

> (time (car (list-append (intsto 1000) (intsto 100))))
cpu time: 531 real time: 531 gc time: 62

1

> (time (car (list-append (intsto 1000) (intsto 100))))

cpu time: 609 real time: 609 gc time: 0
y

The two expressions are identical, but the time taken is different. Even
on the same computer, the time needed to evaluate the same expression
varies. Many properties unrelated to our expression (such as where things
happen to be stored in memory) impact the actual time needed for any
particular evaluation. Hence, it is dangerous to draw conclusions about
which procedure is faster based on a few timings.

Another limitation of this way of measuring cost is it only works if we wait
for the evaluation to complete. If we try an evaluation and it has not fin-
ished after an hour, say, we have no idea if the actual time to finish the
evaluation is sixty-one minutes or a quintillion years. We could wait an-
other minute, but if it still hasn’t finished we don’t know if the execution
time is sixty-two minutes or a quintillion years. The techniques we develop
allow us to predict the time an evaluation needs without waiting for it to
execute.

There’s no sense in being precise
when you don’t even know

Finally, measuring the time of a particular application of a procedure doesn’t what you're talking about.
provide much insight into how long it will take to apply the procedure to John von Neumann

different inputs. We would like to understand how the evaluation time
depends on the procedure inputs so we can understand which inputs the
procedure can sensibly be applied to, and can choose the best procedure to
use for different situations.

Exercise 7.1. Suppose you are defining a procedure that needs to append
two lists, one short list, short and one very long list, long, but the order of
elements in the resulting list does not matter. Is it better to use (list-append
short long) or (list-append long short)? (A good answer will involve both
experimental results and an analytical explanation.)

Example 7.1: Multiplying Like Rabbits. Filius Bonacci was an Italian
monk and mathematician in the 12th century. He published a book, Liber



Filius Bonacci

Sunflower

172 7.1. Measuring Cost

Abbaci, on how to calculate with decimal numbers that introduced Hindu-
Arabic numbers to Europe (replacing Roman numbers) along with many of
the algorithms for doing arithmetic we learn in elementary school. It also
included the problem for which Fibonacci numbers are named:?

A pair of newly-born male and female rabbits are put in a field. Rabbits
mate at the age of one month and after that procreate every month,
so the female rabbit produces a new pair of rabbits at the end of its
second month. Assume rabbits never die and that each female rabbit
produces one new pair (one male, one female) every month from her
second month on. How many pairs will there be in one year?

We can define a function that gives the number of pairs of rabbits at the
beginning of the n'" month as:

1 : n=1
Fibonacci(n) = 1 : n=2
Fibonacci(n — 1) 4 Fibonacci(n —2) : n>1

The third case follows from Bonacci’s assumptions: all the rabbits alive
at the beginning of the previous month are still alive (the Fibonacci(n — 1)
term), and all the rabbits that are at least two months old reproduce (the
Fibonacci(n — 2) term).

For example,

Fibonacci(1) =1
Fibonacci(2) =1
Fibonacci(3) = Fibonacci(2) + Fibonacci(1) = 2
Fibonacci(4) = Fibonacci(3) + Fibonacci(2) =3
Fibonacci(5) = Fibonacci(4) + Fibonacci(3) =5
Fibonacci(6) = Fibonacci(5) + Fibonacci(4) = 8

The sequence produced is known as the Fibonacci sequence:

1,1,2,3,5,8,13,21,34,55,89, 144,233,377, . ..

These numbers occur frequently in nature, such as the arrangement of flo-
rets in a sunflower (34 spirals in one direction and 55 in the other) or the
number of petals in common plants (typically 1, 2, 3, 5, 8, 13, 21, or 34),
hence the rarity of the four-leaf clover.

2 Although the sequence is named for Bonacci, it was probably not invented by him. The
sequence was already known to Indian mathematicians with whom Bonacci studied.



Chapter 7. Cost 173

Translating the definition of the Fibonacci function into a Scheme procedure
is straightforward; we combine the two base cases using the or special form:

(define (fibo n)
(if (or (=n1) (=n2))
1
(+ (fibo (— n 1)) (fibo (— n 2)))))

Applying fibo to small inputs works fine:

> (time (fibo 10))

cpu time: 0 real time: 0 gc time: 0

55

> (time (fibo 20))

cpu time: 16 real time: 16 gc time: 0
6765

> (time (fibo 30))

cpu time: 2156 real time: 2187 gc time: 0
832040

Our definition of fibo appears to be correct, but when we use it to try to
determine the number of rabbits in five years by computing (fibo 60), our
interpreter just hangs without producing a value.?

The fibo procedure is defined in a way that guarantees it will complete when
applied to a non-negative whole number: each recursive call reduces the
input by one or two, so both inputs get closer to the base cases than the
original input. Hence, we always make progress and must eventually reach
the base case, unwind the recursive applications, and produce a value. So,
we know it always eventually finishes. To understand why the evaluation
of (fibo 60) did not finish in our interpreter, we need to consider how much
work is required to evaluate the expression.

To evaluate (fibo 60), the interpreter follows the if-expressions to the recur-
sive case, where it needs to evaluate (4 (fibo 59) (fibo 58)). To evaluate (fibo
59), it needs to evaluate (fibo 58) again and also evaluate (fibo 57). To eval-
uate (fibo 58) (which needs to be done twice), it needs to evaluate (fibo 57)
and (fibo 56). So, there is one evaluation of (fibo 60), one evaluation of (fibo
59), two evaluations of (fibo 58), and three evaluations of (fibo 57). The num-
ber of evaluations of the fibo procedure for each input is itself the Fibonacci
sequence!

3Try evaluating this yourself to see what happens. If you get bored waiting for a result,
you can use the Stop button in the upper right hand corner to terminate the evaluation.



174 7.1. Measuring Cost

To understand why, consider the evaluation tree for (fibo 4) shown in Fig-
ure 7.1. The only direct number values are the 1 values that result from
evaluations of either (fibo 1) or (fibo 2). Hence, the number of 1 values must
be the value of the final result, which just sums all these numbers. For
(fibo 4), there are 5 leaf applications, and 3 more inner applications, for 8
(= Fibonacci(5)) total recursive applications. The number of evaluations of
applications of fibo needed to evaluate (fibo 60) is the 61st Fibonacci number
— 2,504,730,781,961 — over two and a half trillion applications of fibo!

(fibo 5)

/\

(fibo 4) (fibo 3)

N T

(fibo 3) (fibo 2) (fibo 2) (fibo 1)

(fibo 2) (fibo 1) 1 1 1

1 1

Figure 7.1. Evaluation of fibo procedure.

Although our fibo definition is correct, it is ridiculously inefficient. In prac-
tice, it only works for input numbers below about 40. It involves a tremen-
dous amount of duplicated work: for the (fibo 60) example, there are two
evaluations of (fibo 58) and over a trillion evaluations of (fibo 1) and (fibo 2).

A more efficient definition would avoid this duplicated effort. We can do
this by building up to the answer starting from the base cases. This is more
like the way a human would determine the numbers in the Fibonacci se-
quence: we find the next number by adding the previous two numbers,
and stop once we have reached the number we want.

The fast-fibo procedure computes the n'" Fibonacci number, but avoids the
duplicate effort by computing the results building up from the first two
Fibonacci numbers, instead of working backwards.

(define (fast-fibo n)
(define (fibo-iter a b left)
(if (<=left 0)
b
(fibo-iter b (4 a b) (— left 1))))
(fibo-iter 11 (— n 2)))



Chapter 7. Cost 175

This is a form of what is known as dynamic programming. The definition
is still recursive, but unlike the original definition the problem is broken
down differently. Instead of breaking the problem down into a slightly
smaller instance of the original problem, with dynamic programming we
build up from the base case to the desired solution. In the case of Fibonacci,
the fast-fibo procedure builds up from the two base cases until reaching the
desired answer.

The helper procedure, fibo-iter (short for iteration), takes three parameters:
a is the value of the previous-previous Fibonacci number, b is the value of
the previous Fibonacci number, and left is the number of iterations needed
before reaching the target. The initial call to fibo-iter passes in 1 as a (the
value of Fibonacci(1)), and 1 as b (the value of Fibonacci(2)), and (— n 2) as
left (we have n — 2 more iterations to do to reach the target, since the first
two Fibonacci numbers were passed in as a and b we are now working on
Fibonacci(2)).

The body of fibo-iter first checks if we have reached the target number. This
happens when left is 0, and the value is the previous Fibonacci number
(which was passed in as the value of the b parameter). If we have not
reached the target number, we make progress by recursively calling fibo-
iter, but advancing the inputs: the value that was previously b (the previ-
ous Fibonacci number) will now be the first input (the previous-previous
Fibonacci number), the value of the previous Fibonacci number is the sum
of the previous two, (4 a b), and since we have completed one iteration the
value passed in as left is decremented by 1.

The fast-fibo procedure produces the same output values as the original fibo
procedure, but requires far less work to do so. The number of applications
of fibo-iter needed to evaluate (fast-fibo 60) is now only 59. The value passed
in as left for the first application of fibo-iter is 58, and each recursive call
reduces the value of left by one until the zero case is reached. This allows
us to compute the expected number of rabbits in 5 years is 1548008755920
(over 1.5 Trillion)*.

7.2 Orders of Growth

From the Fibonacci example, we see that the same problem can be solved
by procedures that require vastly different resources. The important ques-
tion in understanding the resources required to evaluate a procedure ap-

4Perhaps Bonacci’s assumptions are not a good model for actual rabbit procreation. This
result suggests that in about 10 years the mass of all the rabbits produced from the initial
pair will exceed the mass of the Earth, which, although scary, seems unlikely!

dynamic programming



Remember that accumulated
knowledge, like accumulated
capital, increases at compound
interest: but it differs from the
accumulation of capital in this;
that the increase of knowledge
produces a more rapid rate of
progress, whilst the
accumulation of capital leads to
a lower rate of interest. Capital
thus checks its own
accumulation: knowledge thus
accelerates its own advance.
Each generation, therefore, to
deserve comparison with its
predecessor, is bound to add
much more largely to the
common stock than that which

it immediately succeeds.
Charles Babbage, 1851

176 7.2. Orders of Growth

plication is how the required resources scale with the size of the input. For small
inputs, both Fibonacci procedures work using with minimal resources. For
large inputs, the first Fibonacci procedure never finishes, but the fast Fi-
bonacci procedure finishes (nearly instantly) on a typical laptop (the time
reported by (time (fast-fibo 60)) is 0 milliseconds).

The important difference is the number of recursive applications: for the
original fibo procedure, we need Fibonacci(n + 1) recursive applications to
compute (fibo n); for the fast-fibo procedure, we only need n — 2 applications
of fibo-iter to evaluate (fast-fibo n). Although the amount of time each appli-
cation takes is different for the two procedures, the actual time needed does
not matter too much for understanding the resources required to evaluate
the procedure applications. The actual time depends on the computer we
have, as well as on other factors like what other programs are running on
the computer at the same time, and how things happen to be arranged in
memory.

In this section, we introduce three functions computer scientists use to cap-
ture the important properties of how resources required grow with input
size. Each function takes as input a function, and produces as output a set
of functions:

O(f) (“big oh”) is the set of functions that grow no faster than f grows.
O(f) (theta) is the set of functions that grow as fast as f grows.
Q(f) (omega) is the set of functions that grow no slower than f grows.

The point of these functions is to capture the asymptotic behavior of func-
tions, that is, how they behave as the inputs get arbitrarily large. To under-
stand how the time required to evaluate a procedure increases as the inputs
to that procedure increase, we want to understand the asymptotic behavior
of a function that takes the size of input to the target procedure as its input,
and outputs the number of steps required to evaluate the target procedure
on that input.

Figure 7.2 depicts the sets O, ©, () for some function f. Next, we define
each function and provide some examples. Chapter 8 illustrates how to an-
alyze the time required to evaluate applications of procedures using these
notations.

72.1 BigO

The first notation we introduce is O, pronounced “big oh”. The O function
takes as input a function, and produces as output the set of all functions
that grow no faster than the input function. The set O(f) is the set of all



Chapter 7. Cost 177

o0

Functions that
grow faster
than f

Figure 7.2. Visualization of the sets O(f), Q(f), and ©(f).

functions that grow as fast as, or slower than, f grows. In Figure 7.2, the
O(f) set is represented by everything inside the outer circle.

To define the meaning of O precisely, we need to consider what it means
for a function to grow. What we want to capture is how the output of the
function increases as the input to the function increases. First, we consider
a few examples; then we provide a formal definition of O.

Consider two functions, f(n) = n+ 12 and g(n) = n — 7. No matter what
input value we try for 1, the value of f (1) is greater than the value of g(n).
This doesn’t matter for the growth rates, though. What matters is how the
difference between g(n) and f(n) changes as the input values increase. No
matter what values we choose for n; and ny, we know ¢(n1) — f(n1) =
g(n2) — f(np) = —19. So, the growth rates of f and g are identical. Hence,
n —7isin the set O(n 4+ 12), and n + 12 is in the set O(n — 7).

Suppose the functions are f(n) = 2n and g(n) = 3n. The difference be-
tween ¢(n) and f(n) is n. This difference increases as the input value 7 in-
creases, but it increases by the same amount as 7 increases. So, the growth
rate as 1 increases is |, = 1. The value of 2n is always within a constant
multiple of 31, so they grow asymptotically at the same rate. Hence, 21 is
in the set O(3n) and 37 is in the set O(2n).

Now, consider f(n) = n and g(n) = n%. The difference between g(n) and
f(n)is n* —n = n(n — 1). The growth rate as n increases is @ =n—1
The value of n — 1 increases as 1 increases, so ¢ grows faster than f. This

means n? is not in O(n) since n? grows faster than n. The function 7 is in



178 7.2. Orders of Growth

O(n?) since n grows slower than n? grows.

For our final example, consider the number of applications of our Fibonacci
procedures. For the fibo procedure, evaluating (fibo n) requires Fibonacci(n +
1) recursive applications; for the fast-fibo procedure, there are n — 2 appli-
cations.

The Fibonacci function grows very rapidly. The value of Fibonacci(n + 2) is
more than double the value of Fibonacci(n) since

Fibonacci(n +2) = Fibonacci(n + 1) + Fibonacci(n)

and Fibonacci(n + 1) > Fibonacci(n). The rate of increase is multiplicative,
and must be at least a factor of v/2 ~ 1.414 (since increasing by one twice
more than doubles the value).® This is much faster than the growth rate of
n — 2, which increases by one when we increase n by one. So, n — 2 is in the
set O(Fibonacci(n + 1)), but Fibonacci(n + 1) is not in the set O(n — 2).

Some of the example functions are plotted in Figure 7.2.1. Recall that we
are concerned with the running time of programs as input sizes increase.
The O notation reveals the asymptotic behavior of functions. Note in the
first graph, the rightmost value of n? is greatest, followed by 3n, n 4 12
and Fibonacci(n). For higher input values, however, eventually the value of
Fibonacci(n) will be greatest. For the third graph, the values of Fibonacci(n)
for input values up to 20 are so high, that the other functions appear as
nearly flat lines on the graph.

Definition of O. The function g is a member of the set O( f ) if and only if
there exist positive constants ¢ and 71y such that

g(n) < cf(n)

for all values n > ny.

We can show g is in O(f) using the definition of O( f) by choosing positive
constants for the values of ¢ and 1o, and showing that the property g(n) <
cf(n) holds for all values n > ny. To show g is not in O(f), we need to
explain how, for any choices of ¢ and 1y, we can find values of n that are
greater than 1o such that ¢(n) < c¢f(n) does not hold.

Example 7.2: O Examples. We now show the properties claimed earlier
are true using the formal definition.

a. n—7isin O(n +12): Choose ¢ = 1 and ny = 1. Then, we need to show
n—7 <1(n+12) for all values n > 1. This is true, since n — 7 > n + 12
for all values n.

SIn fact, the rate of increase is a factor of ¢ = (1 + V5)/2 ~ 1.618, also known as the
“golden ratio”. This is a rather remarkable result, but explaining why is beyond the scope
of this book.



25 % n? 100 % n?

20 80 e
+n+12
* X
15+ n + A 3n 60 N Fibo(n)
yaN X
10 A 40 .
A A3n
5 A % Fibo(n) 20 ; - NS % + +n+12
A : * + 4+ L AR
* A & * *
O* * OQ T K *
1 2 3 4 5 2 4 6 8 10
n n
7000
* Fibo(n)
6000
5000
4000 *
3000
*
2000
*
1000 *

*

o B x X XX n’
0AAAAAAAAAARRAAAAAALALAD 3n nt12
4 8 12 16 20

Figure 7.3. Orders of Growth.

Each graph shows the same four functions, but for different input ranges.



180 7.2. Orders of Growth

b. n+ 12 is in O(n — 7): Choose ¢ = 2 and ny = 26. Then, we need to
show n +12 < 2(n — 7) for all values n > 26. The equation simplifies to
n 412 < 2n — 14, which simplifies to 26 < n. This is trivially true for all
values n > 26.

¢. 2nis in O(3n): Choose ¢ = 1 and 19 = 1. Then, 2n < 3n for all values
n>1.

d. 3nisin O(2n): Choose ¢ = 2 and 19 = 1. Then, 3n < 2(2n) simplifies to
n < 4/3n which is true for all values n > 1.

e. nisin O(n?): Choose c = 1and ng = 1. Thenn < n? for all values n > 1.

f. n?isnotin O(n): We need to show that no matter what values are chosen
for c and nyg, there are values of n > ng such that the inequality n? < cn
does not hold. For any value of ¢, we can make n? > cn by choosing
n>c.

g. n—2is in O(Fibonacci(n +1)): Choose c = 1and ngp = 1. Thenn —2 <
Fibonacci(n + 1) for all values n > ny.

h. Fibonacci(n + 1) isnotin O(n — 2): No matter what values are chosen for
c and ny, there are values of n > ng such that Fibonacci(n +1) > c¢(n —2).
We know Fibonacci(12) = 144, and, from the discussion above, that:

Fibonacci(n +2) > 2 x Fibonacci(n)

This means, for n > 12, we know Fibonacci(n) > n®. So, no matter what
value is chosen for ¢, we can choose n = ¢. Then, we need to show

Fibonacci(n +1) > n(n —2)

The right side simplifies to n? — 2n. For n > 12, we know Fibonacci(n) >
n2, so we also know Fibonacci (n+1) > n? — 2n. Hence, we can always
choose an 1 that contradicts the Fibonacci(n +1) < n — 2 inequality by

choosing an n that is greater than 1y, 12, and c.

For all of the examples where ¢ is in O(f), there are many possible choices
for c and ng that would work. For the given c values, we can always use a
higher 1 value than the selected value. It only matters that there is some
finite, positive constant we can choose for 1y, such that the required in-
equality, g(n) < cf(n) holds for all values n > ny. Hence, our proofs
would work equally well if we selected higher values for 1y than we did.
Similarly, we could always choose higher c values with the same 1y values.
The key is just to pick any appropriate values for c and 1y, and show the
inequality holds for all values n > ny.



Chapter 7. Cost 181

Proving that a function is not in O(f) is usually tougher. The key to these
proofs is that the value of n that invalidates the inequality is selected after
the values of ¢ and ng are chosen. One way to think of this is as a game
between two adversaries. The first player picks c and ng, and the second
player picks n. To show the property that ¢ is not in O(f), we need to
show that no matter what values the first player picks for ¢ and ng, the
second player can always find a value n that is greater than ng such that

g(n) > cf(n).

Exercise 7.2. For each of the ¢ functions below, answer whether or not g
is in the set O(n). Your answer should include a proof. If g is in O(n) you
should identify values of c and 1 that can be selected to make the necessary
inequality hold. If ¢ is not in O(n) you should argue convincingly that no
matter what values are chosen for ¢ and ng there are values of n > ng such
the inequality in the definition of O does not hold.

a. g(n) =n+5

b. ¢(n) = .01n

c. g¢(n) =150n+ /n

d. g(n) =

e. g(n) =

Exercise 7.3. Given f is some function in O(h), and g is some function

not in O(h), which of the following are true (for any choice of h):

a. For all positive integers m, f(m) < g(m).
b. For some positive integer m, f(m) < g(m).

c. For some positive integer my, and all positive integers m > my,

f(m) < g(m)

7.2.2 Omega

The set Q(f) (omega) is the set of functions that grow no slower than f
grows. So, a function g is in Q(f) if it grows as fast as f or faster. This is
different from O( f ), which is the set of all functions that grow no faster than
f grows. In Figure 7.2, Q(f) is the set of all functions outside the darker
circle.

The formal definition of Q)(f) is nearly identical to the definition of O(f):
the only difference is the < comparison is changed to >.



182 7.2. Orders of Growth

Definition of Q(f). The function g is a member of the set Q(f) if and only
if there exist positive constants c and ng such that

g(n) > cf(n)
for all values n > ny.

Example 7.3: () Examples. = We repeat the examples from the previous
section with () instead of O. The strategy is similar: we show g is in Q(f)
using the definition of Q)(f) by choosing positive constants for the values
of c and np, and showing that the property g(n) > cf(n) holds for all values
n > ng. To show g is not in Q(f), we need to explain how, for any choices
of c and 19, we can find a choice for n > ng such that g(n) < c¢f(n).

a. n—7isin Q(n+12): Choose ¢ = % and ny = 38. Then, we need to show

n—7> 1(n+12) for all values n > 38. This is true, since the inequality
simplifies 7 > 19 which holds for all values n > 38.

b. n+12isin Q(n —7): Choose ¢ = 1 and np = 1.

c. 2n is in Q(3n): Choose ¢ = % and np = 1. Then, 2n > 1(3n) simplifies
to n > 0 which holds for all values n > 1.

d. 3n is in Q(2n): Choose ¢ = 1 and ny = 1. Then, 3n > 2n simplifies to
n > 0 which is true for all values n > 1.

e. 1 is not in O(n?): Whatever values are choosen for ¢ and 19, we can
choose 1 > ng such that n > cn? does not hold. We can choose n > %
(note that ¢ must be less than 1 for the inequality to hold for any positive
n, so if ¢ is not less than 1 we can just choose n > 2). Then, the right side
of the inequality cn? will be greater than 7, and the needed inequality
n > cn? does not hold.

f. n?isin Q(n): Choose ¢ = 1 and 1y = 0: n> > n forall n > 0.

g. n — 2 is not in Q(Fibonacci(n + 1)): No matter what values are choosen
for ¢ and ny, we can choose n > ng such that n — 2 > Fibonacci(n + 1)
does not hold. The value of Fibonacci(n + 1) more than doubles every
time 7 is increased by 2 (see Section 7.2.1), but the value of ¢(n — 2) only
increases by 2c. Hence, if we keep increasing n, eventually Fibonacci(n +
1) > ¢(n — 2) for any choice of c.

h. Fibonacci(n + 1) is in Q(n — 2): choose ¢ = 1 and ny = 0: Fibonacci(n +
1) >n—2foralln > 0.



Chapter 7. Cost 183

Exercise 7.4. Repeat Exercise 7.2, but using () instead of O.

Exercise 7.5. For each part, identify a function g that satisfies the stated
property.

a. gisin O(n?) but not in Q(n?).
b. ¢ isnotin O(n?) but is in Q(n?).
c. gisinboth O(n?) and Q(n?)

7.2.3 Theta

The notation O(f) is the set of functions that grow at the same rate as f. It
is the intersection of the sets O(f) and Q)(f). Hence, a function g is in ©( f)
if and only if ¢ is in O(f) and g is in Q(f). In Figure 7.2, ©(f) is the ring
between the outer and inner circles.

An alternate definition combines the inequalities for O and :

Definition of ©(f). The function g is a member of the set ©(f) if any only
if there exist positive constants cy, ¢z, and 1o such that

cif(n) > g(n) = caf(n)
is true for all values n > ny.

If g(n) is in ©(f(n)), then the sets O(f(n)) and ©(g(n)) are identical. We
also know O(f(n)) = O(g(n)) and Q(f(n)) = Q(g(n)). Intuitively, since
g(n) € O(f(n)) means g and f grow at the same rate,

Example 7.4: © Examples. = We repeat the previous examples using ©.
Determining membership in ©(f) is simple once we know membership in

O(f) and Q(f).

a. n—7isin®(n+12): n —7isin O(n +12) and in Q(n + 12). Intuitively,
n — 7 increases at the same rate as n + 12, since adding one to n adds one
to both function outputs. Choose c; =1, ca = %, and ny = 38. We can
choose our value of ¢; as the value of ¢ in the O(f) proof, ¢, as the value

of ¢ in the Q(f) proof, and ny as the maximum value of the 1y values
from the O(f) and Q(f) proofs.

b. n+12isin ®(n—7): n4+12is in O(n — 7) and in Q(n — 7). Choose
C1 22,C2 Zl,andifl():l.



184 7.2. Orders of Growth

c. 2nis in ©(3n): 2n is in O(3n) and in Q(3n). Choose ¢; = 1, ¢; = 3, and
no = 1.

d. 3nisin ©(2n): 3n is in O(2n) and in Q(2n). Choose ¢; =2, ¢c; = 1, and
no = 1.

e. nis not in @(n?): n is not in Q(n?). Intuitively, n grows slower than 7?
since increasing 1 by one always increases the value of the first function,
n, by one, but increases the value of n? by 2n + 1, a value that increases
as 7 increases.

f. n?is notin ®(n): n? is not in O(n).
g. n — 2 is notin ©(Fibonacci(n +1)): n — 2 is not in Q(n).
h. Fibonacci(n + 1) is not in Q(n — 2): Fibonacci(n + 1) is not in O(n — 2).

Exercise 7.6. Repeat Exercise 7.2, but using © instead of O.

Properties of O, (), and ®. Because O, ), and © are concerned with
the asymptotic properties of functions, that is, how they grow as inputs
approach infinity, many functions that are different when the actual output
values matter generate identical sets with the O, (3, and ® functions. For
example, we saw n — 7 is in ©(n + 12) and n + 12 is in ©(n — 7). In fact,
every function that is in ©(n — 7) is also in ©(n + 12).

More generally, if we could prove ¢ is in O(an + k) where a is a positive
constant and k is any constant, then g is also in ©(#n). Thus, the set © (an +
k) is equivalent to the set ©(n).

We can prove @(an + k) = ©(n) from the definition of ©. To prove the sets
are equivelent, we need to show that (1) any function ¢ which is in ©(n)
is also in ©(an + k); and (2) any function ¢ which is in @(an + k) is also in
O(n):

1. Suppose g is in ©(n). This means we can find positive constants c;,
c2, and ng such that c;n > g(n) > cpn. In order to show g is also
in ®(an + k), we need to show that we can find dy, d,, and mg such
that dy(an + k) > g(n) > dx(an + k) for all n > my. Simplifying the
inequalities, we need (adq)n + kdy > g(n) > (ady)n + kdy. Ignoring
the constants for now, we can pick d; = %1 and d, = %2 Since g is in
©(n), we know

c c
(a=")n > g(n) > (a=)n
a a
is satisfied. As for the constants, as 7 increases they become insignif-

icant. Adding one to d; and d; adds an to the first term and k to the
second term. Hence, as n grows, an becomes greater than k.



Chapter 7. Cost 185

2. Suppose g is in ©(an + k). This means we can find positive constants
c1, €2, and ng such that ¢1(an + k) > g(n) > cp(an + k). Simplifying
the inequalities, we have (aci)n +ke; > g(n) > (aca)n + ke, or, for
some different positive constants b; = ac; and b, = ac, and constants
ki = ke and ky = kep, bin +ky > g(n) > bon + ky. In order to show
¢ is also in ©(n), we need to show that we can find d;, d», and my
such that din > g(n) > dyn for all n > my. If it were not for the
constants, we already have this with d; = b; and d, = b,. As before,
the constants become inconsequential as 7 increases.

This property also holds for the O and () operators since our proof for @
also proved the property for the O and () inequalities.

This result can be generalized to any polynomial. The set ®(ag + a1 +
ayn? + ... + agn) is equivalent to ®(n*). Because we are concerned with the
asymptotic growth, only the highest power term of the polynomial matters
once n gets big enough.

Exercise 7.7. Show that @(n? — n) is equivalent to ®(n?).

Exercise 7.8. || Is ®(n?) equivalent to @(n>!)? Either prove they are iden-
tical, or prove they are different.

Exercise 7.9. | «| Is ©(2") equivalent to ®(3")? Either prove they are iden-
tical, or prove they are different.

7.3 Summary

By considering the asymptotic growth of functions, rather than their actual
outputs, we can better capture the important properties of how the cost of
evaluating a procedure application grows with the size of the input. The
O, O, and © operators allow us to hide constants and factors that change
depending on the speed of our processor, how data is arranged in mem-
ory, and the specifics of how our interpreter is implemented. Instead, we
can consider the essential properties of the procedure. In the next chapter,
we explore how to use these operators to analyze the costs of executing
different procedures.



