Programming

The Analytical Engine has no pretensions whatever to originate any thing. It
can do whatever we know how to order it to perform. It can follow analysis; but
it has no power of anticipating any analytical relations or truths. Its province
is to assist us in making available what we are already acquainted with.
Augusta Ada, Countess of Lovelace,
in Notes on the Analytical Engine, 1843

What distinguishes a computer from other tools is its programmability. With-
out a program, a computer is an overpriced and not very effective door
stopper. With the right program, though, a computer can be a tool for com-
municating across the continent, discovering a new molecule that can cure
cancer, writing and recording a symphony, or managing the logistics of a
retail empire.

Programming is the act of writing instructions that make the computer do
something useful. It is an intensely creative activity, involving aspects of
art, engineering, and science. Good programs are written to be executed
efficiently by computers, but also to be read and understood by humans.
The best programs are delightful in ways similar to the best architecture,
elegant in both form and function.

The ideal programmer would have the vision of Isaac Newton, the intel-
lect of Albert Einstein, the memory of Joshua Foer, the courage of Amelia
Earhart, the determination of Michael Jordan, the pragmatism of Abraham
Lincoln, the creativity of Miles Davis, the aesthetic sense of Maya Lin, the
wisdom of Benjamin Franklin, the foresight of Garry Kasparov, the hind-
sight of Edward Gibbon, the writing talents of William Shakespeare, the
oratorical skills of Martin Luther King, the audacity of John Roebling, the
humility of Socrates, and the self-confidence of Grace Hopper.

Fortunately, it is not necessary to possess all of those rare qualities to be a
good programmer! Indeed, anyone who is able to master the intellectual
challenge of learning a language (which, presumably, anyone who has got-
ten this far has done at least for English) can become a good programmer.
Since programming is a new way of thinking, many people find it challeng-
ing and even frustrating at first. Because the computer does exactly what

David Evans, Computing: Explorations in Language, Logic, and Machines, May 4, 2009

Golden Gate Bridge

46 3.1. Problems with Natural Languages

it is told, any small mistake in a program may prevent it from working as
intended. With a bit of patience and persistence, however, the tedious parts
of programming become easier, and you will be able to focus your energies
on the fun and creative problem solving parts.

In the previous chapter, we explored the components of language and mech-
anisms for defining languages. In this chapter, we explain why natural lan-
guages are not a satisfactory way for defining procedures and introduce
languages for programming computers and how they are used to define
procedures.

3.1 Problems with Natural Languages

Natural languages, such as English, work adequately (most, but certainly
not all, of the time) for human-human communication, but are not well-
suited for human-computer or computer-computer communication. Why
can’t we use natural languages to program Computers?

Next, we survey several of the reasons for this, focusing on specifics from
English, although all natural languages suffer from all of these problems to
varying degrees.

Complexity. Although English may seem simple to you now, it took many
years of intense effort (most of it subconscious) for you to learn it. Despite
using it for most of your waking hours for many years (assuming you are
a native English speaker), you only know a small fraction of the entire lan-
guage. The Oxford English Dictionary contains 615,000 words, of which a
typical native English speaker knows about 40,000.

Ambiguity. Not only do natural languages have huge numbers of words,
most words have many different meanings. To understand which meaning
is intended requires knowing the context, and sometimes pure guesswork.

For example, what does it mean to be paid biweekly? According to the
American Heritage Dictionaryl, biweekly has two definitions:

1. Happening every two weeks.

2. Happening twice a week; semiweekly.

Merriam-Webster’s Dic:tionary2 takes the opposite approach:

! American Heritage, Dictionary of the English Language (Fourth Edition), Houghton Mif-
flin Company, 2007 (http://www.answers.com/biweekly).

2Merriam-Webster Online, Merriam-Webster, 2008 (http://www.merriam-webster.com/
dictionary/biweekly).

Chapter 3. Programming 47

1. occurring twice a week

2. occurring every two weeks : fortnightly

So, depending on which definition is intended, someone who is paid bi-
weekly could either be paid once or four times every two weeks! One
would not want the correct behavior of a payroll management program
to depend on how biweekly is interpreted.

Even if we can agree on the definition of every word, the meaning of a
sentence is often ambiguous. Here is one of my favorite examples, taken
from the instructions with a shipment of ballistic missiles from the British
Admiralty:®

It is necessary for technical reasons that these warheads be stored upside
down, that is, with the top at the bottom and the bottom at the top. In
order that there be no doubt as to which is the bottom and which is the
top, for storage purposes, it will be seen that the bottom of each warhead
has been labeled "TOP’.

Irregularity. Because natural languages evolve over time as different cul-
tures interact and speakers misspeak and listeners mishear, natural lan-
guages end up a morass of irregularity. Nearly all grammar rules have
exceptions. For example, English has a rule that we can make a word plu-
ral by appending an s. The new word means “more than one of the original
word’s meaning”. This rule works for most words: word — words, language
— languages, person — persons.* It does not work for all words, however.
The plural of goose is geese (and gooses is not an English word), the plural of
deer is deer (and deers is not an English word), and the plural of beer is con-
troversial (and may depend on whether you speak American English or
Canadian English). These irregularities can be charming for a natural lan-
guage, but they are a constant source of difficulty for non-native speakers
attempting to learn a language. There is no sure way to predict when the
rule can be applied, and it is necessary to memorize each of the irregular
forms.

Uneconomic. It requires a lot of space to express a complex idea in a nat-
ural language. Many superfluous words are needed for grammatical cor-
rectness, even though they do not contribute to the desired meaning. Since
natural languages evolved for everyday communication, they are not well
suited to describing the precise steps and decisions needed in a computer
program.

3Caren Park, Abandon hope, all ye who enter here. .., The Hummus Report, May 1988
(http://www.textfiles.com/magazines/HUMUS/humus.005).

40r is it people? What is the singular of people? What about peeps? Can you only have
one peep?

I have made this [letter] longer
than usual, only because I have
not had the time to make it
shorter.

Blaise Pascal

48 3.2. Programming Languages

As an example, consider a procedure for finding the maximum of two num-
bers. In English, we could describe it like this:

To find the maximum of two numbers, compare them. If the first number
is greater than the second number, the maximum is the first number.
Otherwise, the maximum is the second number.

Perhaps shorter descriptions are possible, but any much shorter descrip-
tion probably assumes the reader already knows a lot. By contrast, we can
express the same steps in the Scheme programming language in very con-
cise way: (define (bigger a b) (if (> a b) a b)). (Don’t worry if this doesn’t
make sense yet—it should by the end of this chapter.)

Limited means of abstraction. Natural languages provide small, fixed sets
of pronouns to use as means of abstraction, and the rules for binding pro-
nouns to meanings are often unclear. As discussed in Section 2.2, the means
of abstraction available in English are particularly poor. Since program-
ming often involves using simple names to refer to complex things, we
need more powerful means of abstraction than natural languages provide.

3.2 Programming Languages

For programming computers, we want languages that are simple, unam-
biguous, regular, economical, and that provide more powerful means of
abstraction. A programming language is a language that is designed to be
read and written by humans to create programs that can be executed by
computers.

Programming languages come in many flavors. It is difficult to simulta-
neously satisfy all the goals, in particular simplicity is often at odds with
economy and powerful means of abstraction. Every feature that is added
to a language to increase its expressiveness incurs a cost in reducing sim-
plicity and regularity.

Another reason there are many different programming languages is that
they are at different levels of abstraction. Some languages provide program-
mers with detailed control over machine resources, such as selecting a par-
ticular location in memory where a value is stored. Other languages hide
most of the details of the machine operation from the programmer, allow-
ing them to focus on higher-level actions.

Ultimately, we want a program the computer can execute. This means at
the lowest level we need languages the computer can understand directly.
At this level, the program is just a sequence of bits encoding machine in-
structions. Code at this level is not easy for humans to understand or write,

Chapter 3. Programming 49

but it is easy for a processor to execute quickly. The machine code encodes
instructions that direct the processor to take simple actions like moving
data from one place to another, performing simple arithmetic, and jump-
ing around to find the next instruction to execute.

For example, the bit sequence 1110101111111110 encodes an instruction
in the Intel x86 instruction set (used on most PCs) that tells the processor to
jump backwards two locations. Since two locations is the amount of space
needed to hold this instruction, jumping back two locations actually jumps
back to the beginning of this instruction. Hence, it gets stuck running for-
ever without making any progress. The computer’s processor is designed
to execute very simple instructions like this one. This means each instruc-
tion can be executed very quickly. A typical modern processor can execute
billions of instructions in a single second.’

Until the early 1950s, all programming was done at the level of simple in-
structions. The problem with instructions at this level is that they are not
easy for humans to write and understand, and you need many simple in-
structions before you have a useful program.

In the early 1950s, Admiral Grace Hopper developed the first compilers.
A compiler is a computer program that generates other programs. It can
translate an input program written in a high-level language that is easier
for humans to create into a program in a machine-level language that is
easier for a computer to execute.

An alternative to a compiler is an interpreter. An interpreter is a tool that
translates between a higher-level language and a lower-level language, but
where a compiler translates an entire program at once and produces a ma-
chine language program that can be executed directly, an interpreter inter-
prets the program a small piece at a time while it is running. This has the
advantage that we do not have to run a separate tool to compile a program
before running it; we can simply enter our program into the interpreter and
run it right away. This makes it easy to make small changes to a program
and try it again, and to observe the state of our program as it is running.

A disadvantage of using an interpreter instead of a compiler is that because
the translation is happening while the program is running, the program
may execute much slower than a similar compiled program would. An-
other advantage of compilers over interpreters is that since the compiler
translates the entire program it can also analyze the program for consis-
tency and detect certain types of programming mistakes automatically in-
stead of encountering them when the program is running (or worse, not

SWhen a computer is marketed as a “2GHz processor” that means the processor executes
2 billion cycles per second. This does not map directly to the number of instructions it can
execute in a second, though, since some instructions take several cycles to execute.

Grace Hopper, 1952

Image courtesy Computer History Museum

Nobody believed that I had a
running compiler and nobody
would touch it. They told me
computers could only do

arithmetic.
Grace Hopper

50 3.3. Scheme

detecting them at all and producing unintended results). This is especially
important when writing large, critical programs such as flight control soft-
ware — we want to detect as many problems as possible in the flight control
software before the plane is flying!

3.3 Scheme

For now, we are more concerned with interactive exploration than with
performance and detecting errors early, so we use an interpreter instead of
a compiler. The programming system we use for the first part of this book
is depicted in Figure 3.1.

(define (bigger a b)
if(>ab)ab

Scheme Program (if ())

(bigger 3 4)

[4

Eé;gine (bigger a b) -

Gf & ab) ab)

(bigger 3 4)

Interpreter Welcome to DrScheme, version 4.1.3 [3m].
Language: Pretty Big; memory limit: 128
megabytes.

g
0010011010010...

Processor

Figure 3.1. Running a Scheme program.

The input to our programming system is a program written in a program-
ming language named Scheme.® Scheme was developed at MIT in the 1970s
by Guy Steele and Gerald Sussman, based on the LISP programming lan-
guage that was developed by John McCarthy in the 1950s. A Scheme inter-
preter interprets a Scheme program and executes it on the machine proces-
SOT.

Although Scheme is not widely used in industry, it is a great language for
learning about computing and programming. The primary advantage of

®Originally, it was named “Schemer”, but the machine used to develop it only supported
6-letter file names, so the name was shortened to “Scheme”.

Chapter 3. Programming 51

using Scheme to learn about computing is its simplicity and elegance. The
language is simple enough that you will learn nearly the entire language
by the end of this chapter (we defer describing a few aspects until Chap-
ter 10), and by the end of this book you will know enough to implement
your own Scheme interpreter. By contrast, some programming languages
that are widely used in industrial programming such as C++ and Java re-
quire thousands of pages to describe, and even the world’s experts in those
languages do not agree on exactly what all programs mean.

Although almost everything we describe should work in all Scheme inter-
preters, for the examples in this book we assume the DrScheme program-
ming environment which is freely available from http://www.drscheme.org/.
DrScheme includes interpreters for many different languages, so you must
select the desired language using the Language menu. The selected lan-
guage defines the grammar and evaluation rules that will be used to inter-
pret your program. For all the examples in this book, we use the language
named Pretty Big.

3.4 Expressions

Scheme programs are composed of expressions and definitions (Section 3.5).
An expression is a syntactic element that has a value. The act of determining
the value associated with an expression is called evaluation. A Scheme inter-
preter, such as the one provided in DrScheme, is a machine for evaluating
Scheme expressions. If you enter an expression to a Scheme interpreter, it
responds by displaying the value of that expression.

Expressions may be primitives. Scheme also provides means of combi-
nation for producing complex expressions from simple expressions. The
next subsections describe primitive expressions and application expres-
sions. Section 3.6 describes expressions for making procedures and Sec-
tion 3.7 describes expressions that can be used to make decisions.

3.4.1 Primitives
An expression can be replaced with a primitive:

Expression ::= PrimitiveExpression

As with natural languages, primitives are the smallest units of meaning.
Hence, the value of a primitive is its pre-defined meaning.

52 3.4. Expressions

Scheme provides many different primitives. Three useful types of primi-
tives are described next: numbers, Booleans, and primitive procedures.

Numbers. Numbers represent numerical values. Scheme provides all the
kinds of numbers you are familiar with, and they mean almost exactly what
you think they mean.”

Example numbers include:

150 0 —12
3.14159 3/4 999999999999999999999

Numbers evaluate to their value. For example, the value of the primitive
expression 150 is 150.

Booleans. Booleans represent truth values. There are two primitives for
representing true and false:

PrimitiveExpression ::= true | false

Unsurprisingly, the meaning of true is true, and the meaning of false is
false.’

Primitive Procedures. Scheme provides primitive procedures correspond-
function ing to many common functions. Mathematically, a function is a mapping
from inputs to outputs. A function has a domain, the set of all inputs that it
accepts. For each input in the domain, there is exactly one associated out-
put. For example, + is a procedure that takes zero or more inputs, each of
which must be a number. The output it produces is the sum of the values
of the inputs. (We cover how to apply a function in the next subsection.)

Table 3.1 describes some of the primitive procedures.

"The details of managing numbers on computers are complex, and we do not consider
them here.

8In the DrScheme interpreter, #t and #f are used as the primitive truth values; they mean
the same thing as true and false. So, when you evaluate something that evaluates to true, it
will appear as # in the interactions window.

Symbol
+

zero?

tion.

Description

add
multiply

subtract

divide

is zero?
is equal to?

is less than?

is greater than?

is less than or
equal to?

is greater than
or equal to?

Inputs

Zero or more
numbers

Zero or more
numbers

two numbers

two numbers

one number

two numbers

two numbers

two numbers

two numbers

two numbers

Output

sum of the input numbers (0 if
there are no inputs)

product of the input numbers (1
if there are no inputs)

the value of the first number
minus the value the second
number

the value of the first number
divided by the value of the
second number

true if the input value is O,
otherwise false

true if the input values have the
same value, otherwise false

true if the first input value has
lesser value than the second
input value, otherwise false

true if the first input value has
greater value than the second
input value, otherwise false

true if the first input value is not
greater than the second input
value, otherwise false

true if the first input value is not
less than the second input value,
otherwise false

Table 3.1. Selected Scheme Primitive Procedures.

All of these primitive procedures operate on numbers. The first four are the
basic arithmetic operators; the rest are comparison procedures. Some of these
procedures are defined for more inputs than just the ones shown here. For ex-
ample, the subtract procedure also works on one number, producing its nega-

54 3.4. Expressions

3.4.2 Application Expressions

Most of the actual work done by a Scheme program is done by application
expressions. The grammar rule for application is:

Expression = ApplicationExpression
ApplicationExpression ::= (Expression MoreExpressions)
MoreExpressions == € | Expression MoreExpressions

This rule generates a list of one or more expressions surrounded by paren-
theses. The value of the first expression should be a procedure. All of
the primitive procedures are procedures; in Section 3.6, we will see how
to create new procedures. The remaining expressions are the inputs to the
procedure.

For example, the expression (+ 1 2) is an ApplicationExpression, consisting
of three subexpressions. Although this example is probably simple enough
that you can probably guess that it evaluates to 3, we will demonstrate in
detail how it is evaluated by breaking down into its subexpressions using
the grammar rules. The same process will allow us to understand how any
expression is evaluated.

Here is a parse tree for the expression (4 1 2):

Expression

ApplicationExpression

e

(Expression MoreExpressions)
‘ /\
PrimitiveExpression Expression MoreExpressions
| | T
+ PrimitiveExpression Expression = MoreExpressions
| | |
1 PrimitiveExpression €
|
2

Following the grammar rules, we replace Expression with ApplicationEx-
pression at the top of the parse tree. Then, we replace ApplicationExpres-

Chapter 3. Programming 55

sion with (Expression MoreExpressions). The Expression term is replaced
PrimitiveExpression, and finally, the primitive addition procedure +-. This
is the first subexpression of the application, so it is the procedure to be ap-
plied. The MoreExpressions term produces the two operand expressions: 1
and 2, both of which are primitives that evaluate to their own values. The
application expression is evaluated by applying the value of the first ex-
pression (the primitive procedure +) to the inputs given by the values of
the other expressions. Following the meaning of the primitive procedure,
(4 1 2) evaluates to 3 as expected.

As with any nonterminal, the Expression nonterminals in the application
expression can be replaced with anything that appears on the right side of
an expression rule, including the application expression rule. Hence, we
can build up complex expressions like (+ (* 10 10) (+ 25 25)).

The parse tree is:

Expression

ApplicationExpression

e

(Expression MoreExpressions)
PrimitiveExpression Expression MoreExpressions

| | T

+ ApplicationExpression ExpressionMoreExpressions

(x 10 10) ApplicationExpression €

(+ 25 25)

This tree is similar to the previous tree, except instead of the subexpressions
of the first application expression being simple primitive expressions, they
are now application expressions. (Instead of showing the complete parse
tree for the nested application expressions, we use triangles.)

To evaluate the output application, we need to evaluate all the subexpres-
sions. The first subexpression, +, evaluates to the primitive procedure. The
second subexpression, (x 10 10), evaluates to 100, and the third expression,
(+ 25 25), evaluates to 50. Now, we can evaluate the original expression us-
ing the values for its three component subexpressions: (4 100 50) evaluates
to 150.

56 3.4. Expressions

Exercise 3.1. Draw a parse tree for the Scheme expression
(+ 100 (x 5 (+ 55)))

and show how it would be evaluated.

Exercise 3.2. Predict how each of the following Scheme expressions is
evaluated. After making your prediction, try evaluating the expression in
DrScheme. If the result is different from your prediction, explain why the
Scheme interpreter evaluates the expression as it does.

. 150

. (+ 150)

. (+ (+ 100 50) (* 2 0))

. (= (+ 100 50) (+ 15 (+ 5 5)))

. (zero? (— 150 (4 50 50 (4 25 25))))
f. +

g [x (++<)

o A T o

[¢]

Exercise 3.3. For each problem, construct a Scheme expression that calcu-
lates the result and try evaluating it in DrScheme.

a. How many seconds are there in a year?
b. For how many seconds have you been alive?

c. For what fraction of your life have you been in school?

Exercise 3.4. Construct a Scheme expression to calculate the distance in
inches that light travels during the time it takes the processor in your com-
puter to execute one cycle. Hint: A meter is defined as the distance light travels in
1/299792458!" of a second in a vacuum. One meter is 100 centimeters, and one inch is de-
fined as 2.54 centimeters. Your processor speed is probably given in gigahertz (GHz), which
are 1,000,000,000 hertz. One hertz means once per second, so 1GHz means the processor
executes 1,000,000,000 cycles per second. On a Windows machine, you can find the speed
of your processor by opening the Control Panel (select it from the Start menu) and selecting
System. Note that Scheme performs calculations exactly, so the result will be displayed as
a fraction. To see a more useful answer, use (exact->inexact Expression) to convert the value

of the expression to a decimal representation.

Chapter 3. Programming 57

3.5 Definitions

Scheme provides a simple, yet powerful, mechanism for abstraction. We
can introduce a new name using a definition:

Definition ::= (define Name Expression)

After a definition, the name in the definition is now associated with the
value of the expression in the definition.? A definition is not an expression
since it does not evaluate to a value.

A name can be any sequence of letters, digits, and special characters (such
as —, >, 7, and /) that starts with a letter or special character. Examples of
valid names include a, Ada, Augusta-Ada, gold49, lyuck, and yikes!\ %@\#.
We don’t recommend using some of these names in your programs, how-
ever! A good programmer will pick names that are easy to read, pronounce,
and remember, and that are not easily confused with other names.

After a name has been bound to a value by a definition, that name may be
used in an expression:

Expression ::= NameEXxpression
NameExpression ::= Name

The value of a NameExpression is the value associated with the name.

For example, below we define speed-of-light to be the speed of light in meters
per second, define seconds-per-hour to be the number of seconds in an hour,
and use them to calculate the speed of light in kilometers per hour:

> (define speed-of-light 299792458)

> speed-of-light

299792458

> (define seconds-per-hour (x 60 60))

> (/ (x speed-of-light seconds-per-hour) 1000)
1079252848 4/5

9 Alert readers should be worried that we need a more precise definition of the meaning
of definitions to know what it means for a value to be associated with a name. This one will
serve us well for now, but we will provide a more precise explanation of the meaning of a
definition in Chapter 10.

58 3.6. Procedures

3.6 Procedures

In Chapter 1 we defined a procedure as a description of a process. Scheme
provides a way to define procedures that take inputs, carry out a sequence
of actions, and produce an output. In Section 3.4.1, we saw that Scheme
provides some primitive procedures. To construct complex programs, how-
ever, we need to be able to create our own procedures.

Procedures are similar to mathematical functions in that they provide a
mapping between inputs and outputs, but they are different from mathe-
matical functions in two key ways:

¢ State — in addition to producing an output, a procedure may access
and modify state. This means that even when the same procedure is
applied to the same inputs, the output produced may vary. Because
mathematical functions do not have external state, when the same
function is applied to the same inputs it always produces the same
result. State makes procedures much harder to reason about. In par-
ticular, it breaks the substitution model of evaluation we introduce in
the next section. We will ignore this issue until Chapter 10, and focus
until then only on procedures that do not involve any state.

* Resources — unlike an ideal mathematical function, which provides
an instantaneous and free mapping between inputs and outputs, a
procedure requires resources to execute before the output is produced.
The most important resources are space (memory) and time. A proce-
dure may need space to keep track of intermediate results while it
is executing. Each step of a procedure requires some time to exe-
cute. Predicting how long a procedure will take to execute, and find-
ing the fastest procedure possible for solving some problem, are core
problems in computer science. We will consider this throughout this
book, and in particular in Chapter 8. Even knowing if a procedure
will finish (that is, ever produce an output) is a challenging problem.
In Chapter 15 we will see that it is impossible to solve in general.

For the rest of this chapter, however, we will view procedures as idealized
mathematical functions: we will consider only procedures that involve no
state, and we will not worry about the resources our procedures require.

3.6.1 Making Procedures

Scheme provides a general mechanism for making a procedure:

Chapter 3. Programming 59

Expression ::= ProcedureExpression
ProcedureExpression ::= (lambda (Parameters) Expression)
Parameters = € | Name Parameters

Evaluating a ProcedureExpression produces a procedure that takes as in-
puts the Parameters following the lambda.!® You can think of lambda as
meaning “make a procedure”. The body of the procedure is the Expression,
which is not evaluated until the procedure is applied.

Note that a ProcedureExpression can replace an Expression. This means
anywhere an Expression is used we can create a new procedure. This is
very powerful since it means we can use procedures as inputs to other pro-
cedures and create procedures that return new procedures as their output!

Here are some example procedures:

¢ (lambda (x) (* x x)) — a procedure that takes one input, and produces
the square of the input value as its output.

¢ (lambda (a b) (+ a b)) — a procedure that takes two inputs, and pro-
duces the sum of the input values as its output.

¢ (lambda () 0) — a procedure that takes no inputs, and produces 0 as
its output.

¢ (lambda (a) (lambda (b) (+ a b))) — a procedure that takes one input
(a), and produces as its output a procedure that takes one input and
produces the sum of that input at a as its output. We can think of this
procedure as a procedure that makes an adding procedure.

3.6.2 Substitution Model of Evaluation

For a procedure to be useful, we need to apply it. In Section 3.4.2, we saw
the syntax and evaluation rule for an ApplicationExpression when the pro-
cedure to be applied is a primitive procedure. The syntax for applying a
constructed procedure is identical to the syntax for applying a primitive
procedure:

Expression == ApplicationExpression
ApplicationExpression ::= (Expression MoreExpressions)
MoreExpressions == € | Expression MoreExpressions

105cheme uses lambda to make a procedure because it is based on LISP which is based
on Lambda Calculus (see Chapter 17).

60 3.6. Procedures

To understand how constructed procedures are evaluated, we need a new
evaluation rule. In this case, the first Expression evaluates to a procedure
that was created using a ProcedureExpression, so we can think of the Ap-
plicationExpression as:

ApplicationExpression =
((lambda (Parameters) Expression) MoreExpressions)

(The underlined part is the replacement for the ProcedureExpression.)

To evaluate the application, we evaluate the MoreExpressions in the ap-
plication expression. These expressions are known as the operands of the
application. The resulting values are the input to the procedure. There
must be exactly one expression in the MoreExpressions corresponding to
each name in the parameters list. Next, evaluate the expression that is the
body of the procedure. Whenever any parameter name is used inside the
body expression, the name evaluates to the value of the corresponding in-
put. This is similar to the way binding worked in Post production systems
(Section 2.3). When a value is matched with a procedure parameter, that
parameter is bound to the value. When the parameter name is evaluated,
the result is the bound value.

Example 3.1: Square. Consider evaluating the following expression,
which apples the squaring procedure to 2:

(lambda (x) (x x x)) 2)

It is an ApplicationExpression where the first sub-expression is the Pro-
cedureExpression, (lambda (x) (x x x)). To evaluate the application, we
evaluate all the subeexpressions and apply the value of the first subexpres-
sion to the values of the remaining subexpressions. The first subexpression
evaluates to a procedure that takes one parameter named x and has the ex-
pression body (* x x). There is one operand expression, the primitive 2, that
evaluates to 2.

To evaluate the application we bind the first parameter, x, to the value of the
first operand, 2, and evaluate the procedure body, (* x x). After substituting
the parameter values, we have (x 2 2). This is an application of the primitive
multiplication procedure. Evaluating the application results in the value 4.

The procedure in our example, (lambda (x) (x x x)), is a procedure that takes
a number as input and as output produces the square of that number. We
can use the definition mechanism (from Section 3.5) to give this procedure
a name so we can reuse it:

Chapter 3. Programming 61

(define square (lambda (x) (* x x)))

This defines the name square as the procedure. After this, we can use square
to produce the square of any number:

> (square 2)

4

> (square 1/4)

1/16

> (square (square 2))
16

Example 3.2: Make adder. For the make an adding procedure example,
(lambda (a) lambda (b) (4 a b))) 3)

produces a procedure that adds 3 to its input. Applying that procedure,
((lambda (a) (lambda (b) (4 a b))) 3) 4)

evaluates to 7. By using define, we can give these procedures sensible
names:

(define make-adder
(lambda (a)
(lambda (b) (+ a b))))

Then,
(define add-three (make-adder 3))

defines add-three as a procedure that takes one parameter and outputs the
value of that parameter plus 3.

Abbreviated Procedure Definitions. Since we commonly need to define
new procedures, Scheme provides a condensed notation for defining a pro-

cedurell:

Definition ::= (define (Name Parameters) Expression)

HThe condensed notation also includes a begin expression, which is a special form. We
will not need the begin expression until we start dealing with procedures that have side-
effects. We describe the begin special form in Chapter 10.

62 3.7. Decisions

This incorporates the lambda invisibly into the definition, but means ex-
actly the same thing. For example,

(define square (lambda (x) (* x x)))
can be written equivalently as:
(define (square x) (* x x))

The two definitions mean exactly the same thing.

Exercise 3.5. Define a procedure, cube, that takes one number as input and
produces as output the cube of that number.

Exercise 3.6. Define a procedure, compute-cost, that takes as input two num-
bers, the first represents that price of an item, and the second represents the
sales tax rate. The output should be the total cost, which is computed as the
price of the item plus the sales tax on the item, which is its price times the
sales tax rate. For example, (compute-cost 13 0.05) should evaluate to 13.65.

3.7 Decisions

We would like to be able to make procedures where the actions taken de-
pend on the input values. For example, we may want a procedure that
takes two numbers as inputs and evaluates to the maximum value of the
two inputs. To define such a procedure we need a way of making a deci-
sion. A predicate is a test expression that is used to determine which actions
to take next. Scheme provides the if expression for determining actions
based on a predicate.

The IfExpression replacement has three Expression terms. For clarity, we
give each of them names as denoted by the subscripts:

Expression :=- IfExpression

IfExpression ::= (if Expressionpiedicate
ExpreSSjonConsequent
ExpreSSionAlternate)

The evaluation rule for an IfExpression is to first evaluate Expressionpyedicates
the predicate expression. If it evaluates to any non-false value, the value of

Chapter 3. Programming 63

the IfExpression is the value of Expressionconsequent, the consequent expres-
sion, and the alternate expression is not evaluated at all. If the predicate
expression evaluates to false, the value of the IfExpression is the value of
Expressionjiernate, the alternate expression, and the consequent expression
is not evaluated at all. The predicate expression determines which of the
two following expressions is evaluated to produce the value of the IfEx-
pression.

Note that if the value of the predicate is anything other than false, the con-
sequent expression is used. For example, if the predicate evaluates to true,
to a number, or to a procedure the consequent expression is evaluated.

The if-expression is a special form. This means that although it looks syn-
tactically identical to an application (that is, it could be an application of a
procedure named if), it is not evaluated as a normal application would be.
Instead, we have a special evaluation rule for if-expressions. The reason a
special rule is needed is because we do not want all the subexpressions to
be evaluated. With the normal application rule, all the subexpressions are
evaluated, and then the procedure resulting from the first subexpression
is applied to the values resulting from the others. With the if special form
evaluation rule, the predicate expression is always evaluated, but only one
of the following subexpressions is evaluated depending on the result of
evaluating the predicate expression.

This means an if-expression can evaluate to a value even if evaluating one
of its subexpressions would produce an error. For example,

if (>34)(x++)7)
evaluates to 7 even though evaluating the subexpression (x + +) would

produce an error. Because of the special evaluation rule for if-expressions,
the consequent expression is never evaluated.

Example 3.3: Bigger. Now that we have procedures, decisions, and defi-
nitions, we can understand the bigger procedure from the beginning of the
chapter. The definition,

(define (bigger a b) (if (> a b) a b))
is a condensed procedure definition. It is equivalent to:

(define bigger (lambda (a b) (if (> a b) a b)))

This defines the name bigger as the value of evaluating the procedure ex-
pression (lambda (a b) (if (> a b) a b)). This is a procedure that takes two

64 3.7. Decisions

inputs, named a and b. Its body is an if-expression with predicate expres-
sion (> a b). The predicate expression compares the value that is bound to
the first parameter, 4, with the value that is bound to the second parameter,
b, and evaluates to true if the value of the first parameter is greater, and
false otherwise. According to the evaluation rule for an if-expression, if the
predicate evaluates to any non-false value (in this case, true), the value of
the if-expression is the value of the consequent expression, a. If the pred-
icate evaluates to false, the value of the if-expression is the value of the
alternate expression, b. Hence, our bigger procedure takes two numbers as
inputs and produces as output the greater of the two inputs.

Exercise 3.7. Follow the evaluation and application rules to evaluate the
following Scheme expression:

(bigger 3 4)
where bigger is the maximum procedure defined as,
(define bigger (lambda (a b) (if (> a b) a b)))

It is very tedious to follow all of the steps (that’s why we normally rely on
computers to do it!), but worth doing once to make sure you understand
the evaluation rules.

Exercise 3.8. Define a procedure, xor, that implements the logical
exclusive-or operation. The xor function takes two inputs, and outputs
true if exactly one of those outputs has a true value. Otherwise, it outputs
false. For example, (xor true true) should evaluate to false and (xor (< 3 5)
(= 8 8)) should evaluate to true.

Exercise 3.9. Define a procedure, abs, that takes a number as input and
produces the absolute value of that number as its output. For example,
(abs 3) should evaluate to 3, (abs —150) should evaluate to 150, and (abs 0)
should evaluate to 0.

Chapter 3. Programming 65

Exercise 3.10. [x| Define a procedure, bigger-magnitude, that takes two in-
puts, and produces as output the value of the input with the maximum
magnitude (that is, absolute distance from zero). For example,

(bigger-magnitude 5 —7)
should evaluate to —7, and

(bigger-magnitude 9 —3)
should evaluate to 9.

Exercise 3.11. [x| Define a procedure, biggest, that takes three inputs, and
produces as output the maximum value of the three inputs. For example,

(biggest 57 3)

should evaluate to 7. Try to find at least two different ways to define biggest,
one using bigger, and one without using it.

3.8 Summary

At this point, we have covered enough of Scheme to write useful programs
(even if the programs we have seen so far seem rather dull). In fact (as we
will see in Chapter 15), we have covered enough to express every possible
computation! We just need to combine the constructs we know in more
complex ways to perform more interesting computations. The next chap-
ter, and much of the rest of this book, focuses on ways to combine the con-
structs for making procedures, making decisions, and applying procedures
in more powerful ways.

Here we summarize the grammar rules and evaluation rules. Each gram-
mar rule has an associated evaluation rule. This means that any Scheme
fragment that can be described by the grammar also has an associated
meaning that can be produced by combining the evaluation rules corre-
sponding to the grammar rules.

Program == €| ProgramElement Program
ProgramElement == Expression | Definition

A program is a sequence of expressions and definitions.

66 3.8. Summary

Definition = (define Name Expression)

A definition evaluates the expression, and associates the value
of the expression with the name.

Definition = (define (Name Parameters) Expression)

Abbreviation for (define Name (lambda Parameters)
Expression)

Expression == PrimitiveExpression | NameExpression
ApplicationExpression |
ProcedureExpression | IfExpression

The value of the expression is the value of the replacement
expression.

PrimitiveExpression == Number | true | false | primitive procedure

Evaluation Rule 1: Primitives. A primitive expression
evaluates to its pre-defined value.

NameExpression = Name
Evaluation Rule 2: Names. A name evaluates to the value
associated with that name.

ApplicationExpression := (Expression MoreExpressions)
Evaluation Rule 3: Application. To evaluate an application
expression:

a. Evaluate all the subexpressions;

b. Then, apply the value of the first subexpression to the
values of the remaining subexpressions.

MoreExpressions == € | Expression MoreExpressions
ProcedureExpression :=> (lambda (Parameters) Expression)

Evaluation Rule 4: Lambda. Lambda expressions evaluate to a
procedure that takes the given parameters and has the
expression as its body.

Parameters == € | Name Parameters

Chapter 3. Programming 67

IfExpression = (if Expressionpegicate
Expr eSSI'OnConsequent EXPF €SSI0NAjternate)

Evaluation Rule 5: If. To evaluate an if-expression, (a) evaluate
the predicate expression; then, (b) if the value of the predicate
expression is a false value then the value of the if-expression is
the value of the alternate expression; otherwise, the value of
the if-expression is the value of the consequent expression.

The evaluation rule for an application (Rule 3b) uses apply to perform the
application. We define apply using the two application rules:

¢ Application Rule 1: Primitives. If the procedure to apply is a primi-
tive procedure, just do it.

¢ Application Rule 2: Constructed Procedures. If the procedure to ap-
ply is a constructed procedure, evaluate the body of the procedure
with each parameter name bound to the corresponding input expres-
sion value.

Note that evaluate in the Application Rule 2 means use the evaluation rules
above to evaluate the expression. Thus, the evaluation rules are defined us-
ing the application rules, which are defined using the evaluation rules! This
appears to be a circular definition, but as with the grammar examples, it has
a base case. There are some expressions we can evaluate without using the
application rules (e.g., primitive expressions, name expressions), and some
applications we can evaluate without using the evaluation rules (when the
procedure to apply is a primitive). Hence, the process of evaluating an ex-
pression will sometimes finish and when it does we end with the value of
the expression.12

12This does not guarantee it will always finish, however! We will see in some examples in
the next chapter where evaluation never finishes.

