Interpreters

The tools we use have a profound (and devious!) influence on our thinking
habits, and, therefore, on our thinking abilities.
Edsger Dijkstra, How do we tell truths that might hurt?

Languages are powerful tools for thinking. Different languages encourage
different ways of thinking and lead to different thoughts. Hence, inventing
new languages is a powerful way for solving problems. We can solve a
problem by designing a language in which it is easy to express a solution,
expressing the solution in that language, and implementing an interpreter
for that language.

An interpreter is just a program. As input, it takes a specification of a pro-
gram in some language. As output, it produces the output of the input
program. By designing a new interpreter, we can invent a new language.

In this chapter, we explore how to implement an interpreter. We also intro-
duce the Python programming language, and describe a Python program
that implements an interpreter for a subset of the Scheme language. Im-
plementing an interpreter further blurs the line between data and programs,
that we first crossed in Chapter 3 by passing procedures as parameters and
returning new procedures as results. Now that we are implementing an in-
terpreter, all programs are just data input for the interpreter program. The
meaning of the program is determined by the interpreter.

12.1 Building Languages

To implement an interpreter for a given target language we need to:

1. Implement a parser that takes as input a string representation of a
program in the target language and produces a structural parse of
the input program. The parser should break the input string into its
language components, and form a parse tree data structure that rep-
resents the input text in a structural way. Section 12.3 describes our

David Evans, Computing: Explorations in Language, Logic, and Machines, May 15, 2009

interpreter

parser



294 12.2. Python

parser implementation.

evaluator 2. Implement an evaluator that takes as input a structural parse of an in-
put program, and evaluates that program. The evaluator should im-
plement the target language’s evaluation rules. Section 12.4 describes
our evaluator.

Our target language is a simple subset of Scheme we call Charme.!

The Charme language is very simple, yet is powerful enough to express
all computations (that is, it is a universal programming language). Its
evaluation rules are a subset of the statefull evaluation rules for Scheme.
Charme includes the application expression, if expression, lambda expres-
sion, name expression, and definitions. It supports integral numbers, and
provides the basic arithmetic and comparison primitives with the same
meanings as they have in Scheme.

The full grammar and evaluation rules for Charme are given in Section 12.4.
The evaluator implements those evaluation rules.

Before describing our interpreter implementation, the next section intro-
duces Python, the programming language we use to implement the inter-
preter (and for most of the rest of the programs in this book).

12.2 Python

We could implement a Charme interpreter using Scheme (or any other uni-
versal programming language), but choose to implement it using the pro-
gramming language Python. Python is a popular programming language
initially designed by Guido van Rossum in 1991.2 Python is freely available
from http://www.python.org.

Python is widely used to develop dynamic web applications and as a script-
ing language for applications. Python was used to manage special effects
production for Star Wars: Episode II, and is used extensively in many or-
ganizations including Google, reddit.com, and NASA.2

We use Python instead of Scheme to implement our Charme interpreter for

1The original name of Scheme was “Schemer”, a successor to the languages “Planner”
and “Conniver”. Because the computer on which “Schemer” was implemented only al-
lowed six-letter file names, its name was shortened to “Scheme”. In that spirit, we name
our snake-charming language, “Charmer” and shorten it to Charme. Depending on the
programmer’s state of mind, the language name can be pronounced either “charm” or “char
me”.

2The name Python alludes to Monty Python’s Flying Circus.

3See http://www.python.org/about/quotes/ for more descriptions of Python uses.



Chapter 12. Interpreters 295

a few reasons. The first reason is pedagogical: it is instructive to learn new
languages. As Dijkstra’s quote at the beginning of this chapter observes,
the languages we use have a profound effect on how we think. This is true
for natural languages, but also true for programming languages. Different
languages make different styles of programming more convenient, and it is
important for every programmer to be familiar with many different styles
of programming.

All of the major concepts we have covered so far apply to Python nearly
identically to how they apply to Scheme, but seeing them in the context of
a different language should make it clearer what the fundamental concepts
are and what are artifacts of a particular programming language. Another
reason for using Python is that it provides some features that enhance ex-
pressiveness that are not available in Scheme. These include built-in sup-
port for objects and imperative control structures.

The grammar for Python is quite different from the Scheme grammar, so
Python programs look very different from Scheme programs. In most re-
spects, however, the evaluation rules are quite similar to the evaluation
rules for Scheme. This chapter does not describe the entire Python lan-
guage, but instead introduces the grammar rules and evaluation rules for
different Python constructs as we need them to implement our interpreter.
For more complete documentation on Python see http://www.python.org.

Like Scheme, Python is a universal programming language: both languages
are capable of expressing all mechanical computations. For any computa-
tion we can express in Scheme, there is a Python program that defines the
same computation. Conversely, every Python program has an equivalent
Scheme program.

One piece of evidence that every Scheme program has an equivalent Python
program is the interpreter we develop in this chapter. Since we can imple-
ment an interpreter for a Scheme-like language in Python, we know we can
express every computation that can be expressed by a program in that lan-
guage with an equivalent Python program (that is, the Charme interpreter
implemented in Python with the original Charme program as input).

Tokenizing. We introduce Python using one of the procedures in our in-
terpreter implementation. We divide the job of parsing into two procedures
that are combined to solve the problem of transforming an input string into
a list describing the input program’s structure. The first part is the tokenizer
which tokenizes an input string. Its input is the input string in the target
programming language, and its output is a list of the tokens in that string.

A token is an indivisible syntactic unit. For example, the Charme expres-
sion, (define square (lambda (x) (* x x))), contains the tokens: (, define,

token

python

A

powered



296 12.2. Python

square, (, lambda, (, X, ), (, *, X, X, ), ), and ). The tokens are separated by
whitespace (spaces, tabs, and newlines). Punctuation marks such as the left
and right parentheses are tokens by themselves; even when they are adja-
cent to non-whitespace characters these marks are considered independent
tokens.

The tokenize procedure below takes as input a string s in the Charme target
language, and produces as output a list of the tokens in s. We describe the
Python language constructs it uses next.

def tokenize(s):
current =" # the empty string (two single quotes)
tokens = [] # the empty list
for c in s: # for each character, ¢, in the string s
if c.isspace(): # if ¢ is a whitespace
if len(current) > 0: # if the current token is non—empty
tokens.append(current) # add it to the list
current =" # reset current token to empty string
elif cin '()": # else, if ¢ is a parenthesis
if len(current) > 0: # end the current token
tokens.append(current)
current ="
tokens.append(c) # add the parenthesis to the token list
else: # otherwise (it is an alphanumeric)
current = current + ¢ # add the character to the current token
# end of the for loop (by indentation); reached the end of s
if len(current) > 0: # if there is a current token add it
tokens.append(current)
return tokens # the result is the list of tokens

12.2.1 Python Programs

Whereas Scheme programs are composed of expressions and definitions,
Python programs are mostly sequences of statements. Unlike expressions
which (mostly) evaluate to values, a statement has no value. The emphasis
on statements reflects (and impacts) the style of programming used with
Python. It is more imperative than that used with Scheme: instead of com-
posing expressions in ways that pass the result of one expression as an
operand to the next expression, Python programs typically consist of a se-
quence of statements, each of which alters the state in some way towards
reaching the goal state. Nevertheless, it is possible (but not recommended)
to program in Scheme using an imperative style (emphasizing begin and
set! expressions), and it is possible (but not recommended) to program in



Chapter 12. Interpreters 297

Python using a functional style (emphasizing procedure applications and
eschewing the assignment statement).

Defining a procedure in Python is similar to defining a procedure in Scheme,
except the grammar rule is different:

ProcedureDefinition ::= def Name ( Parameters ) : Block
Parameters = €

Parameters = SomeParameters

SomeParameters = Name

SomeParameters = Name , SomeParameters

Block = Statement

Block = <newline> indented(Statements)
Statements = Statement <newline> MoreStatements
MoreStatements »= Statement <newline> MoreStatements
MoreStatements = €

Unlike in Scheme, the whitespace (such as new lines) has meaning in Python.
Statements cannot be separated into multiple lines, and only one statement
may appear on a single line. Indentation within a line also matters. Instead
of using parentheses to provide code structure, Python uses the indenta-
tion to group statements into blocks. The Python interpreter will report an
error if the indentation of the code does not match its structure.

Since whitespace matters in Python, we include newlines (<newline>)
and indentation in our grammar. We use indented(elements) to indicate that
the elements are indented. For example, the rule for Block is a newline,
followed by one or more statements. The statements are all indented one
level inside the block’s indentation. This means it is clear when the block’s
statements end because the next line is not indented to the same level.

The evaluation rule for a procedure definition is similar to the rule for eval-
uating a procedure definition in Scheme.

Python Procedure Definition. The procedure definition,
def Name (Parameters ) : Block

defines Name as a procedure that takes as inputs the Parameters
and has the body expression Block.

The procedure definition



precedence

298 12.2. Python

def tokenize(s): ...

defines a procedure named tokenize that takes a single parameter, s.

Assignment. The body of the procedure uses several different types of
Python statements. Following Python’s more imperative style, five of the
statements in tokenize are assignment statements. For example, the assign-
ment statement, tokens = [] assigns the value [] (the empty list) to the name
tokens.

The grammar for the assighment statement is:

Statement = AssignmentStatement
AssignmentStatement ::= Target = Expression
Target == Name

For now, we use only a Name as the left side of an assignment, but since
other constructs can appear on the left side of an assignment statement, we
introduce the nonterminal Target for which additional rules can be defined
to encompass other possible assignees. Anything that can hold a value
(such as an element of a list) can appear as the target of an assignment.

The evaluation rule for an assignment statement is similar to Scheme’s eval-
uation rule for set expressions: the meaning of x = e in Python is similar to
the meaning of (set! x ¢) in Scheme, except that the target Name need not ex-
ist before the assignment. In Scheme, evaluating (set! x 7) where the name
x was not previously defined is an error; in Python, if x is not already de-
fined, evaluating x = 7 creates a new place named x.

Python Evaluation Rule: Assignment. To evaluate an assignment
statement, evaluate the expression, and assign the value of the ex-
pression to the place identified by the target. If no such place exists,
create a new place with that name.

Arithmetic and Comparison Expressions. Like Scheme, Python supports
many different kinds of expressions for performing arithmetic and com-
parisons. Since Python does not use parentheses to group expressions,
the grammar provides the grouping by breaking down expression in sev-
eral steps. This defines an order of precedence for parsing expressions. If
a complex expression includes many expressions, the grammar specifies
how they will be grouped. For example, consider the expression 3+4x5. In
Scheme, the expressions (+ 3 (x 4 5)) and (x (+ 3 4) 5) are clearly different
and the parentheses group the subexpressions. The meaning of the Python



Chapter 12. Interpreters 299

expression 3+4+5 is (+ 3 (x 4 5)), that is, it evaluates to 23. The expression
4x5+3 also evaluates to 23.

This makes the Python grammar rules more complex since they must deal
with » and + differently, but it makes the meaning of Python expressions
match our familiar mathematical interpretation, without needing all the
parentheses needed in Scheme expressions. The way this is done is by
defining the grammar rules so an AddExpression can contain a MultEx-
pression as one of its subexpressions, but a MultExpression cannot con-
tain an AddExpression. This makes the multiplication operator have higher
precedence than the addition operator. If an expression contains both + and
+ operators, the * operator attaches to its operands first. The replacement
rules that happen first have lower precedence, since their components must
be built from the remaining pieces.

Here are the grammar rules for Python expressions for comparison, multi-
plication, and addition expressions that achieve this:

Expression = CompExpr

CompExpr ::= CompExpr Comparator CompExpr
Comparator = <> == <= >=

CompExpr == AddExpression

AddExpression 1= AddExpression + MultExpression
AddExpression == AddExpression - MultExpression
AddExpression  := MultExpression

MultExpression ::= MultExpression * PrimaryExpression
Mu]tExpression ::= PrimaryExpression

PrimaryExpression ::= Literal
PrimaryExpression ::= Name
PrimaryExpression ::= ( Expression )

The last rule allows parentheses to be used to group expressions. For ex-
ample, (3 +4) 5 is parsed as the PrimaryExpression, (3 + 4), times 5, so it
evaluates to 35; without the parentheses, 3 + 4 +5 is parsed as 3 plus the
MultExpression, 4 + 5, so it evaluates to 23.

A Literal can be a numerical constant. Numbers in Python are similar (but
not identical) to numbers in Scheme. In the example program, we use the
integer literal 0.

A PrimaryExpression can also be a name, similar to names in Scheme. The



300 12.2. Python

evaluation rule for a name in Python is similar to the stateful rule for eval-

uating a name in Scheme*.

Exercise 12.1. Do comparison expressions have higher or lower precedence
than addition expressions? Explain why using the grammar rules.

Exercise 12.2. Draw the parse tree for each of the following Python expres-
sions and provide the value of each expression.

a. 1+2+3x4

b. 3>2+2

c. 3x6>=15==12

d. (3%6>=15)=="True

12.2.2 Data Types

Python provides many built-in data types. We describe three of the most
useful data types here: lists, strings, and dictionaries.

Lists. Python provides a list datatype similar to lists in Scheme, ex-
cept instead of building list from simpler parts (that is, using cons pairs
in Scheme), the Python list type is provided as a built-in datatype. The
other important difference is that Python lists are mutable.

Lists are denoted in Python using square brackets. For example, [] de-
notes an empty list, and [1, 2] denotes a list containing two elements. As in
Scheme, the elements of a list can be of any type (including another list).

Elements can be selected from a list using the list subscription expression:

PrimaryExpression ::=> SubscriptExpression
SubscriptExpression ::= PrimaryExpression [ Expression ]

If the first primary expression evaluates to a list, the subscript expression
selects the element indexed by value of the inner expression from the list.
For example,

>a=1[1,2,3]

4There are some subtle differences and complexities (see Section 4.1 of the Python Ref-
erence Manual, however, which we do not go into here.



Chapter 12. Interpreters 301

> al0]

1

> a[1+1]

3

> a[3]

IndexError: list index out of range

So, the expression p[0] in Python is analogous to (car p) in Scheme.

We can also use negative selection indexes to select elements from the back
of the list. The expression p[—1] selects the last element in the list p.

The running time of a list selection operation in Python is approximately
constant: it does not depend on the length of the list even if the selection
index is the end of the list. The reason for this is that Python stores lists
internally differently from how Scheme stores them as arbitrary pairs. The
elements of a List are stored as a block in memory, so the location of the Kt
element can be calculated by adding Sk to the location of the start of the list
where S is a constant representing the size of each element in the list.

A subscript expression can also select a range of elements from the list:

SubscriptExpression ::= PrimaryExpression [ Boundy, : Boundpy;g, |
Bound = Expression | €

The subscript expression evaluates to a list containing the elements be-
tween the low bound and the high bound. If the low bound is missing,
the low bound is the beginning of the list. If the high bound is missing, the
high bound is the end of the list. For example,

>a=1[1,2,3]
> al:1]

(1]

> a[l:]

(2, 3]

> a[4—2:3]
(3]

> al:]
[1,2,3]

So, the expression p[1:] in Python is analogous to (cdr p) in Scheme.

Python lists are mutable (the value of a list can change after it is created).
We can use list subscripts as the targets for an assignment expression:



302 12.2. Python

Target ::= SubscriptExpression

For example,

>a=1]1,2,3]
>a[0]=7

>a

[7,2,3]

> a[l:4]=1[4,5, 6]
>a

[7,4,5,6]

> a[l:] = [6]

>a

[7, 6]

Note that assignments can not only be used to change the values of ele-
ments in the list, but also to change the length of the list.

In the tokenize procedure, we use tokens = [] to initialize tokens to an empty
list, and use tokens.append(current) to append an element to the tokens list.
The Python append procedure is similar to the mlist-append! procedure (ex-
cept it works on the empty list, where there is no way in Scheme to modify
the null input list).

Strings. The other datatype used in tokenize is the string datatype, named
str in Python. As in Scheme, a String is a sequence of characters. Un-
like Scheme Strings and Python Lists, which are mutable, the Python str
datatype is immutable. So, once a string is created its value cannot change.
This means all the string methods that seem to change the value of a string
actually return a new string (for example, capitalize() returns a copy of the
string with its first letter capitalized).

Strings are enclosed in quotes, which (unlike in Scheme where single quotes
cannot be used) can be either single quotes (e.g., 'hello’) or double quotes
(e.g., "hello"). In our example program, we use the assignment expression,
current =" (two single quotes), to initialize the value of current to the empty
string. The input, s, is a string object.

Dictionaries. A dictionary is a lookup-table where values are associated
with keys. The keys can be any immutable type (strings and numbers are
commonly used as keys); the values can be of any type. We did not use the
dictionary type in tokenize, but it is very useful for implementing frames in
the evaluator.

A dictionary is denoted using curly brackets. The empty dictionary is {}.
We can add a key-value pair to the dictionary using an assignment where



Chapter 12. Interpreters 303

the left side is a subscript expression that specifies the key and the right
side is the value assigned to that key. For example,

birthyear = {}

birthyear['Euclid'] = '300BC'
birthyear['Ada Lovelace'] = 1815
birthyear['Alan Turing'] = 1912
birthyear['Alan Kay'] = 1940

defines birthdays as a dictionary containing four entries. The keys are all
strings; the values are numbers, except for Euclid’s entry which is a string.

We can obtain the value associated with a key in the dictionary using a
subscript expression. For example, birthyear['Alan Turing'] evaluates to 1912.
We can replace the value associated with a key using the same syntax as
adding a key-value pair to the dictionary. The statement,

birthyear['Euclid'] = —300

replaces the value of birthyear['Euclid'] with the number —300.

The dictionary type also provides a method has_key that takes one input
and produces a Boolean indicating if the dictionary object contains the in-
put value as a key. For the birthyear dictionary, birthyear.has_key('John Backus')
evaluates to False and birthyear.has_key('Ada Lovelace') evaluates to True.

The dictionary type lookup and update operations have approximately
constant running time in most cases: the time it takes to lookup the value
associated with a key does not scale as the size of the dictionary increases.
This is done by computing a number based on the key that determines
where the associated value would be stored (if that key is in the dictio-
nary). The number is used to index into a structure similar to a Python list
(so it has constant time to retrieve any element). Mapping keys to appro-
priate numbers to avoid many keys mapping to the same location in the
list is a difficult problem, but one the Python dictionary object does well
for typical sets of keys.

12.2.3 Objects and Methods

In Python, every data value, including lists and strings, is an object. This
means the way we manipulate data is to invoke methods on objects. The
list datatype provides methods for manipulating and observing lists. The
grammar rules for expressions that call procedures are:



304 12.2. Python

PrimaryExpression ::= CallExpression

CallExpression = PrimaryExpression ( ArgumentList )
ArgumentList = SomeArguments

ArgumentList = €

SomeArguments = Expression

SomeArguments = Expression , SomeArguments

To invoke a method we use the same rules, but the PrimaryExpression of
the CallExpression specifies an object and method:

PrimaryExpression ::= AttributeReference
AttributeReference ::= PrimaryExpression . Name

The name AttributeReference is used since the same syntax is used for ac-
cessing the internal state of objects as well.

The tokenize procedure includes five method applications, four of which are
tokens.append(current). The object reference is tokens, the list of tokens in the
input. The list append method takes one parameter and adds that value to
the end of the list.

The other method invocation is c.isspace() where c is a string consisting of
one character in the input. The isspace method for the string datatype re-
turns true if the input string is non-empty and all characters in the string
are whitespace (either spaces, tabs, or newlines).

The tokenize procedure also uses the built-in function len. The len function
takes as input an object of a collection datatype (including a list or a string),
and outputs the number of elements in the collection. It is is a procedure,
not a method; the input object is passed in as a parameter. In tokenize, we
use len(current) to find the number of characters in the current token.

12.2.4 Control Statements

Python provides control statements for making decisions, looping, and for
returning from a procedure.

If. Python’s if-statement is similar to both the if-expression and conditional-
expression in Scheme:



Chapter 12. Interpreters 305

Statement :=- IfStatement

IfStatement ::= if Expressionp,egicat. : Block Elifs OptElse
Elifs t= €

Elifs = elif Expressionp,egicate : Block Elifs
OptElse = €

OptElse = else: Block

The evaluation rule is similar to Scheme’s conditional expression. First, the
Expressionpyegicate Of the if is evaluated. If it evaluates to a true value, the
consequence Block is evaluated, and none of the rest of the IfStatement is
evaluated. Otherwise, each of the elif predicates is evaluated in order. If
one evaluates to a true value, its Block is evaluated and none of the rest
of the IfStatement is evaluated. If none of the elif predicates evaluates to a
true value, the else Block is evaluated (if there is one).

The main if-statement in tokenize is:

if c.isspace():
elif cin '()":

else:
current = current + ¢

The first if predicate tests if the current character is a space. If so, the end
of the current token has been reached. The consequent Block is itself an
IfStatement:

if len(current) > 0:
tokens.append(current)
current ="

If the current token has at least one character, it is appended to the list of
tokens in the input string and the current token is reset to the empty string.
This IfStatement has no elif or else clauses, so if the predicate is false, there
is nothing to do. Unlike in Scheme, there is no need to have an alternate
clause, since the Python if-statement does not need to produce a value.

If the predicate for the main if-statement is false, evaluation proceeds to the
elif clause. The predicate for this clause tests if ¢ is in the set of characters
given by the literal string '()'. That is, it is true if c is either an open or close
parentheses. As with spaces, a parenthesis ends the previous token, so the
first statement in the elif clauses is identical to the first consequent clause.
The difference is unlike spaces, we need to keep trace of the parentheses,
so it is added to the token list by tokens.append(c).



306 12.2. Python

The final clause is an else clause, so its body will be evaluated if neither the
if or elif predicate is true. This means the current character is not a space
or a parenthesis, so it is some other character. It should be added to the cur-
rent token. This is done by the assignment expression, current = current + c.
The addition operator in Python works on strings as well as numbers (and
some other datatypes). For strings, it concatenates the operands into a new
string. Recall that strings are immutable, so there is no equivalent to the list
append method. Instead, appending a character to a string involves creating
a new string object.

For. A for statement provides a way of iterating through a set of values,
carrying out a body block for each value.

Statement := ForStatement
ForStatement ::= for Target in Expression : Block

The Target (as was used in the assignment statement) is typically a variable
name. The value of the Expression is a collection of elements. To evaluate
a for statement, each value of the Expression collection is assigned to the
Target in order, and the Block is evaluated once for each value.

Other than the first two initializations, and the final two statements, the
bulk of the tokenize procedure is contained in a for statement. The for-
statement in fokenize header is for cins. The string s is the input string,
a collection of characters. So, the loop will repeat once for each character in
s, and the value of c is each character in the input string (represented as a
singleton string), in turn.

Return. In Scheme, the body of a procedure is an expression and the
value of that expression is the result of evaluating an application of the
procedure. In Python, the body of a procedure is a block of one or more
statements. Statements have no value, so there is no obvious way to decide
what the result of a procedure application should be. Python’s solution is
to use a return statement.

The grammar for the return statement is:

Statement 1= ReturnStatement
ReturnStatement ::= return Expression

A return statement finishes execution of a procedure, returning the value
of the Expression to the caller as the result.

The last statement of the tokenize procedure is:



Chapter 12. Interpreters 307

return tokens

It returns the value of the tokens list to the caller.

12.3 Parser

The parser takes as input a Charme program string, and produces as output
a Python list that encodes the structure of the input program. The first step
is to break the input string into tokens; this is what the tokenize procedure
defined in the previous section does.

The next step is to take the list of tokens and produce a data structure that
encodes the structure of the input program. Since the Charme language is
built from simple parenthesized expressions, we can represent the parsed
program as a list. But, unlike the list returned by fokenize which is a flat list
containing the tokens in order, the list returned by parse is a structured list
that may have lists (and lists of lists, etc.) as elements.

Charme’s syntax is very simple, so the parser can be implemented by just

breaking an expression into its components using the parentheses and whites-

pace. The parser needs to balance the open and close parentheses that en-

close expressions. For example, if the input string is " (define square (lambda (x) (* x x)))"
the output of tokenizer is the list:

['('/ Idefinell 'square'I I(’/ 'lambda'/ l(ll 'X'/ I)'/ '(ll '*|/ 'Xll |X'I l)’/ ')'I I)']

The parser structures the tokens according to the program structure, pro-
ducing a parse tree that record the structure of the input program. The
parenthesis provide the program structure, so are removed from the parse
tree. For the example, the resulting parse tree is:
['define’,
'square’,
[ 'lambda’,
['x1,
[+, ', ']
]
]

The output parse structure is a list containing three elements, the first is
the keyword 'define’, the second is the name 'square’, and the third is a list
containing three elements, [lambda’, ['x'], [+, 'X', 'X']], the third of which is
itself a list containing three elements.

Here is the definition of parse:



308 12.3. Parser

def parse(s):
def parsetokens(tokens, inner):
res =[]
while len(tokens) > 0:
current = tokens.pop(0)
if current =="("
res.append (parsetokens(tokens, True))
elif current ==")"
if inner: return res
else:
error('Unmatched close paren:' + s)
return None
else:
res.append(current)

if inner:
error (Unmatched open paren:' + s)
return None

else:
return res

return parsetokens(tokenize(s), False)

The input to parse is a string in the target language. The output is a list of
the parenthesized-expressions in the input. Here are some examples:

> parse('150")

['150]

> parse('(+ 1 2)")

[[+,'1,21]

> parse('(+ 1 (» 2 3))")

[+, 1, 1,2, 37]]

> parse('(define square (lambda (x) (x x x)))')
[['define’, 'square’, ['lambda’, ['x], ['+', X', 'x'T1]]
> parse('(+ 1 2) (+ 3 4))

[[+,'1, 21, [+, '3, #1]

The parentheses are no longer included as tokens in the result, but their
presence in the input string determines the structure of the result.

recursive descent The parse procedure implements what is known as a recursive descent parser.
The main parse procedure defines the parsetokens helper procedure and re-
turns the result of calling it with inputs that are the result of tokenizing the
input string and the Boolean literal False: return parsetokens(tokenize(s), False).



Chapter 12. Interpreters 309

The parsetokens procedure takes two inputs: tokens, a list of tokens (that
results from the tokenize procedure); and inner, a Boolean that indicates
whether the parser is inside a parenthesized expression. The value of inner
is False for the initial call since the parser starts outside a parenthesized
expression. All of the recursive calls result from encountering a '(, so the
value passed as inner is True for all the recursive calls.

The body of the parsetokens procedure initializes res to an empty list that
will be used to store the result. Then, the while statement iterates as long
as the token list contains at least one element. The first statement of the
while statement block assigns tokens.pop(0) to current. The pop method of
the list takes a parameter that selects an element from the list. The selected
element is returned as the result. The pop method also mutates the list object
by removing the selected element. So, tokens.pop(0) returns the first element
of the tokens list and removes that element from the list. This is similar to
(cdr tokens) with one big difference: the tokens object is modified by the call.
This is essential to the parser making progress: every time the tokens.pop(0)
expression is evaluated the number of elements in the token list is reduced
by one.

If the current token is an open parenthesis, parsetokens is called recursively
to parse the inner expression (that is, all the tokens until the matching close
parenthesis). The result is a list of tokens, which is appended to the result.
If the current token is a close parenthesis, the behavior depends on whether
or not the parser is parsing an inner expression. If it is inside an expression
(that is, an open parenthesis has been encountered with no matching close
parenthesis yet), the close parenthesis closes the inner expression, and the
result is returned. If it is not in an inner expression, the close parenthesis
has no matching open parenthesis so a parse error is reported. The else
clause deals with all other tokens by appending them to the list.

12.4 Evaluator

The evaluator takes a list representing a parsed program fragment in Charme
and an environment, and outputs the result of evaluating the input code in
the input environment. The evaluator implements the evaluation rules for
the target language.

The core of the evaluator is the procedure meval:

def meval(expr, env):
if isPrimitive(expr): return eval Primitive(expr)
elif isIf(expr): return evallf(expr, env)
elif isDefinition(expr): evalDefinition(expr, env)



310 12.4. Evaluator

elif isName(expr): return evalName(expr, env)

elif isLambda(expr): return evalLambda(expr, env)

elif isApplication(expr): return eval Application(expr, env)
else: error ('Unknown expression type: ' + str(expr))

The if statement matches the input expression with one of the expression
types (or the definition) in the Charme language, and returns the result of
applying the corresponding evaluation procedure (if the input is a defini-
tion, no value is returned since definitions do not produce an output value).
We next consider each evaluation rule in turn.

12.4.1 Primitives

Charme supports two kinds of primitives: natural numbers and primitive
procedures.

def isPrimitive(expr):
return (isNumber(expr) or isPrimitiveProcedure(expr))

If the expression is a number, it is a string of digits. The isNumber procedure
evaluates to True if and only if its input is a number:

def isNumber(expr):
return isinstance(expr, str) and expr.isdigit()

Here, we use the built-in function isinstance to check if expr is of type str.
The and-expression in Python evaluates similarly to the Scheme and spe-
cial form: the left operand is evaluated first; if it evaluates to a false value,
the value of the and expression is that false value. If it evaluates to a true
value, the right operand is evaluated, and the value of the and-expression
is the value of its right operand. This evaluation rule means it is safe to
use expr.isdigit() in the right operand, since it is only evaluated if the left
operand evaluated to a true value, which means expr is a string.

Primitive procedures are defined using Python procedures. Hence, the
isPrimitiveProcedure procedure is defined using callable, a procedure that re-
turns true only for objects that are callable (such as procedures and meth-
ods):

def isPrimitiveProcedure(expr):
return callable(expr)

The evaluation rule for a primitive is identical to the Scheme rule:

Charme Evaluation Rule 1: Primitives. A primitive expression
evaluates to its pre-defined value.



Chapter 12. Interpreters 311

We need to implement the pre-defined values in our Charme interpreter.

To evaluate a number primitive, we need to convert the string representa-
tion to a number of type int. The int(s) constructor takes a string as its input
and outputs the corresponding integer:

def eval Primitive(expr):
if isNumber(expr): return int(expr)
else: return expr

The else clause means that all other primitives (in Charme, this is only
primitive procedures and Boolean constants) self-evaluate: the value of
evaluating a primitive is itself.

For the primitive procedures, we need to define Python procedures that
implement the primitive procedure. For example, here is the primitivePlus
procedure that is associated with the + primitive procedure:

def primitivePlus (operands):
if (len(operands) == 0): return 0
else: return operands[0] + primitivePlus (operands[1:])

The input is a list of operands. Since a procedure is applied only after all
subexpressions are evaluated (according to the Scheme evaluation rule for
an application expression), there is no need to evaluate the operands: they
are already the evaluated values. For numbers, the values are Python inte-
gers, so we can use the Python + operator to add them. To provide the same
behavior as the Scheme primitive + procedure, we define our Charme
primitive + procedure to evaluate to 0 when there are no operands, and
otherwise, recursively add all of the operand values.

The other primitive procedures are defined similarly.

def primitiveTimes (operands):
if (len(operands) == 0): return 1
else: return operands[0] » primitiveTimes (operands[1:])

def primitiveMinus (operands):
if (len(operands) == 1): return —1 = operands|0]
elif len(operands) == 2: return operands[0] — operands[1]
else:
evalError('— expects 1 or 2 operands, given %s: %s' % (len(operands), str(operands)))

def primitiveEquals (operands):
checkOperands (operands, 2, '=")
return operands[0] == operands[1]



312 12.4. Evaluator

def primitiveLessThan (operands):
checkOperands (operands, 2, '<')
return operands[0] < operands[1]

The checkOperands procedure reports an error if a primitive procedure is
applied to the wrong number of operands:

def checkOperands(operands, num, prim):
if (len(operands) = num):
eval Error('Primitive %s expected %s operands, given %s: %s'
% (prim, num, len(operands), str(operands)))

12.4.2 If Expressions

Charme provides an if-expression special form with an evaluation rule
identical to the Scheme if-expression.

The grammar rule for an if-expression is:

Expression :=- IfExpression

IfExpression ::= (if Expressionpredicate
ExprGSSjonCOnsequent
Expressionajiernate)

The expression object representing an if-expression should be a list contain-
ing three elements, with the first element matching the keyword if.

All special forms have this property: they are represented by lists where the
first element is a keyword that identifies the special form. The isSpecialForm
procedure takes an expression and a keyword and outputs a Boolean. The
result is True if the expression is a special form matching the keyword:

def isSpecialForm(expr, keyword):
return isinstance(expr, list) and len(expr) > 0 and expr[0] == keyword

We can use this to recognize different special forms by passing in different
keywords. We recognize an if-expression by the if token at the beginning of
the expression:

def islf(expr):
return isSpecialForm(expr, if')



Chapter 12. Interpreters 313

The evaluation rule for an if-expression is:®

Charme Evaluation Rule 5: If. To evaluate an if-expression in the
current environment, (a) evaluate the predicate expression in the
current environment; then, (b) if the value of the predicate expres-
sion is a false value then the value of the if-expression is the value of
the alternate expression in the current environment; otherwise, the
value of the if-expression is the value of the consequent expression
in the current environment.

The procedure evallf is implements this evaluation rule:

def evallf(expr,env):
if meval(expr[1], env) != False: return meval(expr[2],env)
else: return meval(expr|[3],env)

To program defensively, we also include some error checking in our evallf
procedure by adding these statements at the beginning of the procedure:

assert islf(expr)
if len(expr) = 4:
evalError (‘Bad if expression: %s' % str(expr))

The first statement uses the Python assert statement to make an assertion.
The assert keyword is followed by an expression. If the value of the ex-
pression is False the assertion produces an error message and terminates
the execution. It is an error to apply evallf to an expression that is not an
if-expression.

The second statement is an if-expression that tests the length of the input
expression. It should have four elements: the if keyword, the predicate
expression, the consequence expression, and the alternate expression. If
the input expression has more or less than four elements, evalError is used
to report and error and terminate execution.

12.4.3 Definitions and Names

To evaluate definitions and names we need to represent environments. A
definition adds a name to a frame, and a name expression evaluates to the
value associated with a name.

5We number the Charme evaluation rules using the numbers we used for the analogous
Scheme evaluation rules, but present them in a different order.



314 12.4. Evaluator

We will use a Python class to represent an environment. As in Chapter 11, a
class packages state and procedures that manipulate that state. In Scheme,
we needed to use a message-accepting procedure to do this. Python pro-
vides the class construct to support it directly. We define the Environment
class for representing an environment. It has internal state for representing
the parent (itself an Environment or None, Python’s equivalent to null for the
global environment’s parent), and for the frame.

The Python dictionary datatype provides a convenient way to implement
a frame. The __init__ procedure constructs a new object. It initializes the
frame of the new environment to the empty dictionary using self._frame = {}.

The addVariable method either defines a new variable or updates the value
associated with a variable. Using the dictionary datatype, we can do this
with a simple assignment statement. The lookupVariable method first checks
if the frame associated with this environment has a key associated with the
input name. If it does, the value associated with that key is the value of the
variable and that value is returned. Otherwise, if the environment has a
parent, the value associated with the name is the value of looking up the
variable in the parent environment. This directly follows from the statefull
Scheme evaluation rule for name expressions. The else clause addresses the
situation where the name is not found and there is no parent environment
(since we have already reached the global environment) by reporting an
evaluation error indicating an undefined name.

class Environment:

def __init__(self, parent):
self._parent = parent
self._frame = {}

def addVariable(self, name, value):
self._frame[name] = value

def lookupVariable(self, name):
if self._frame.has_key(name): return self._frame[name]
elif (self._parent): return self._parent.lookupVariable(name)
else: evalError('Undefined name: %s' % (name))

Once the Environment class is defined, implementing the evaluation rules
for definitions and name expressions is straightforward.

def isDefinition(expr):
return isSpecialForm(expr, 'define’)

def evalDefinition(expr, env):
assert isDefinition(expr)
if len(expr) = 3: evalError ('Bad definition: %s' % str(expr))
name = expr[1]



Chapter 12. Interpreters 315

if isinstance(name, str):
value = meval(expr[2], env)
env.addVariable(name, value)

else:
evalError ('Bad definition: %s' % str(expr))

def isName(expr):
return isinstance(expr, str)

def evalName(expr, env):
assert isName(expr)
return env.lookupVariable(expr)

12.4.4 Procedures

The result of evaluating a lambda-expression is a procedure. Hence, to de-
fine the evaluation rule for lambda-expressions we need to define a class
for representing user-defined procedures. It needs to record the parame-
ters, procedure body, and defining environment:

class Procedure:
def __init__(self, params, body, env):
self._params = params
self._body = body
self._env = env
def _ str__ (self):
return '<Procedure %s / %s>' % (str(self._params), str(self._body))

def getParams(self): return self._params
def getBody(self): return self._body
def getEnvironment(self): return self._env

Using this, we can define the evaluation rule for lambda expressions to
create a Procedure object:

def isLambda(expr):
return isSpecialForm(expr, 'lambda’)

def evalLambda(expr,env):
assert isLambda(expr)
if len(expr) !=3:
evalError ('Bad lambda expression: %s' % str(expr))
return Procedure(expr[1], expr[2], env)



316 12.4. Evaluator

12.4.5 Application

The evaluators circularity comes from the way evaluation and application
are defined recursively. To perform an application, we need to evaluate all
the subexpressions of the application expression, and then apply the result
of evaluating the first subexpression to the values of the other subexpres-
sions.

def isApplication(expr): # requires: all special forms checked first
return isinstance(expr, list)

def eval Application(expr, env):
subexprs = expr
subexprvals = map (lambda sexpr: meval(sexpr, env), subexprs)
return mapply(subexproals[0], subexprovals[1:])

The evalApplication procedure uses the built-in map procedure, which is
similar to list-map from Chapter 5. The first parameter to map is a proce-
dure constructed using a lambda expression (similar in meaning, but not
in syntax, to Scheme’s lambda expression); the second parameter is the list
of subexpressions.

The mapply procedure implements the application rules. If the procedure
is a primitive, it “just does it”: it applies the primitive procedure to its
operands. To apply a constructed procedure (represented by an object of
the Procedure class) it follows the statefull application rule for applying
constructed procedures: it creates a new environment, puts variables in
that environment for each parameter and binds them to the corresponding
operand values, and evaluates the procedure body in the new environment.

def mapply(proc, operands):
if (isPrimitiveProcedure(proc)): return proc(operands)
elif isinstance(proc, Procedure):
params = proc.getParams()
newenv = Environment(proc.getEnvironment())
if len(params) != len(operands):
evalError ('Parameter length mismatch: %s given operands %s'
% (str(proc), str(operands)))
for i in range(0, len(params)):
newenv.addVariable(params[i], operands[i])
return meval(proc.getBody(), newenv)
else:
evalError('Application of non—procedure: %s' % (proc))



Chapter 12. Interpreters 317

12.4.6 Finishing the Interpreter

To finish the interpreter, we define the evalLoop procedure that sets up the
global environment and provides a simple user interface to the interpreter.
To initialize the global environment, we create an environment with no par-
ent and place variables in it corresponding to the primitives in Charme:

def initializeGlobalEnvironment():

global globalEnvironment
globalEnvironment = Environment(None)
globalEnvironment.addVariable('true', True)
globalEnvironment.addVariable('false', False)
globalEnvironment.addVariable('+', primitivePlus)
globalEnvironment.addVariable('—', primitiveMinus)
globalEnvironment.addVariable('«', primitiveTimes)
globalEnvironment.addVariable('=

(

', primitiveEquals)
globalEnvironment.addVariable

<', primitiveLessThan)

The evaluation loop reads a string from the user using the Python built-in
procedure raw_input. It uses parse to convert that string into a structured list
representation. Then, it uses a for-expression to loop through the expres-
sions. It evaluates each expression using meval, and prints out the result.

def evalLoop():
initializeGlobal Environment ()
while True:
inv = raw_input('Charme> ")
if inv == 'quit": break
for expr in parse(inv):
print str(meval(expr, globalEnvironment))

Here are some sample interactions with our Charme interpreter:

> evalLoop()
Charme> 150

150
Charme> (+ 2 2)
4
Charme> (define fibo (lambda (1)
(if(=nl)1
(if(=n2)1
(+ (fibo (— 1 1)) (fibo (— 1 2)))))
None
Charme> fibo

<P1’0C€d1/l1’€ [lnl] / [liful |=|I lnl, v1v], |1 |/ [lifl, [|=|, lnll l2l], |1 l,



318 12.5. Summary

['+, [fibo', ['—', 'n', "1']], ['fibo’, ['=", 'n', "2'T]]]]>
Charme> (fibo 10)
55

12.5 Summary

Languages are tools for thinking, as well as means to express executable
programs. A programming language is defined by its grammar and eval-
uation rules. To implement a language, we need to implement a parser
that carries out the grammar rules and an evaluator that implements the
evaluation rules.

Once we have an interpreter, we can change the meaning of our language
by changing the evaluation rules. In the next chapter, we will see some
examples that illustrate the value of being able to extend and change a lan-

guage.



