
1
Computing

In their capacity as a tool, computers will be but a ripple on the surface of our
culture. In their capacity as intellectual challenge, they are without precedent in
the cultural history of mankind.

Edsger Dijkstra, 1972 Turing Award Lecture

The first million years of hominid tool development focused on developing
tools to amplify, and later mechanize, our physical abilities to enable us to
move faster, reach higher, and hit harder. We have developed tools that am-
plify physical force by the trillions and increase the speeds at which we can
travel by the thousands.

Tools that amplify intellectual abilities are much rarer. While some animals
have developed tools to amplify their physical abilities, only humans have de-
veloped tools to substantially amplify our intellectual abilities and it is those
advances that have enabled humans to dominate the planet. The first key in-
tellect amplifier was language. Language provided the ability to transmit our
thoughts to others, as well as to use our own minds more effectively. The next
key intellect amplifier was writing, which enabled the storage and transmis-
sion of thoughts over time and distance.

Computing is the ultimate mental amplifier—computers can mechanize any
intellectual activity we can imagine. Automatic computing radically changes
how humans solve problems, and even the kinds of problems we can imagine
solving. Computing has changed the world more than any other invention of
the past hundred years, and has come to pervade nearly all human endeav-
ors. Yet, we are just at the beginning of the computing revolution; today’s
computing offers just a glimpse of the potential impact of computing.

There are two reasons why everyone should study computing:

1. Nearly all of the most exciting and important technologies of today and
tomorrow are driven by computing.

2. Understanding computing illuminates deep insights and questions into
the nature of our minds, our culture, and our universe.

Anyone who has submitted a query to Google, watched Toy Story, had LASIK
eye surgery, made a cell phone call, seen a Cirque Du Soleil show, shopped
with a credit card, or microwaved a pizza should be convinced of the first
reason. None of these would be possible without the tremendous advances

2 1.1. Processes, Procedures, and Computers

in computing over the past half century.It may be true that you have to be
able to read in order to fill out

forms at the DMV, but that’s not
why we teach children to read. We

teach them to read for the higher
purpose of allowing them access to

beautiful and meaningful ideas.
Paul Lockhart, Lockhart’s Lament

Although this book will touch on on some exciting applications of computing,
our primary focus is on the second reason, which may seem more surprising.
Computing changes how we think about problems and how we understand
the world. The goal of this book is to teach you that new way of thinking.

1.1 Processes, Procedures, and Computers

Computer science is the study of information processes. A process is a se-information processes

quence of steps. Each step changes the state of the world in some small way,
and the result of all the steps produces some goal state. For example, baking
a cake, mailing a letter, and planting a tree are all processes. Because they in-
volve physical things like sugar and dirt, however, they are not pure informa-
tion processes. Computer science focuses on processes that involve abstract
information rather than physical things.

The boundaries between the physical world and pure information processes,
however, are often fuzzy. Real computers operate in the physical world: they
obtain input through physical means (e.g., a user pressing a key on a keyboard
that produces an electrical impulse), and produce physical outputs (e.g., an
image displayed on a screen). By focusing on abstract information, instead of
the physical ways of representing and manipulating information, we simplify
computation to its essence to better enable understanding and reasoning.

A procedure is a description of a process. A simple process can be describedprocedure

just by listing the steps. The list of steps is the procedure; the act of following
them is the process. If the description can be followed without any thought,
we call it a mechanical procedure. An algorithm is a procedure that is guaran-algorithm

teed to always finish.

For example, here is a procedure for making coffee, adapted from the actual
directions that come with a major coffeemaker:A mathematician is a machine for

turning coffee into theorems.
Attributed to Paul Erdös

1. Lift and open the coffeemaker lid.
2. Place a basket-type filter into the filter basket.
3. Add the desired amount of coffee and shake to level the coffee.
4. Fill the decanter with cold, fresh water to the desired capacity.
5. Pour the water into the water reservoir.
6. Close the lid.
7. Place the empty decanter on the warming plate.
8. Press the ON button.

Describing processes by just listing steps like this has many limitations. First,
natural languages are very imprecise and ambiguous. The steps described
rely on the operator knowing lots of unstated assumptions. For example, step
three assumes the reader understands the difference between coffee grounds
and drinkable coffee, and can correctly infer that this use of “coffee” refers to

Chapter 1. Computing 3

coffee grounds. Other steps assume the coffeemaker is plugged in to a power
outlet and sitting on a flat surface.

One could, of course, add lots more details to our procedure and make the
language more precise than this. Even when a lot of effort is put into writing
precisely and clearly, however, natural languages such as English are inher-
ently ambiguous. This is why the United States tax code is 3.4 million words
long, but lawyers can still spend years arguing over what it really means. If you steal property, you must

report its fair market value in your
income in the year you steal it
unless in the same year, you return
it to its rightful owner.
Your Federal Income Tax, IRS
Publication 17, p. 90.

Another problem with this way of describing a procedure is that the size of the
description is proportional to the number of steps in the process. This is fine
for simple processes that can be executed by humans in a reasonable amount
of time, but the processes we want to execute on computers involve trillions
of steps. This means we need more efficient ways to describe them than just
listing each step one-by-one. The languages we use to program computers
provide ways to define long and complex processes with short procedures.

To program computers, we need tools that allow us to describe processes pre-
cisely and succinctly. Since the procedures are carried out by a machine, ev-
ery step needs to be described; we cannot rely on the operator having “com-
mon sense” (for example, to know how to fill the coffeemaker with water with-
out explaining that water comes from a faucet, and how to turn the faucet
on). Instead, we need mechanical procedures that can be followed without
any thinking.

A computer is a machine that can: computer

1. Accept input. Input could be entered by a human typing at a keyboard,
received over a network, or provided automatically by sensors attached
to the computer.

2. Execute a mechanical procedure, that is, a procedure where each step
can be executed without any thought.

3. Produce output. Output could be data displayed to a human, but it
could also be anything that effects the world outside the computer such
as electrical signals that control how a device operates.

Computers exist in a wide range of forms, and thousands of computers are
hidden in devices we use everyday but don’t think of as computers such as
cars, phones, TVs, microwave ovens, and access cards. Our primary focus in
this book is on universal computers, which are computers that can perform universal computers

all possible mechanical computations on discrete inputs except for practical
limits on space and time. The next section explains what it discrete inputs
means; Chapters 6 and 12 explore more precisely what it means for a com-
puter to be universal.

1.2 Measuring Computing Power

For physical machines, we can compare the power of different machines by
measuring the amount of mechanical work they can perform within a given

4 1.2. Measuring Computing Power

amount of time. This power can be captured with units like horsepower and
watt. Physical power is not a very useful measure of computing power, though,
since the amount of computing achieved for the same amount of energy varies
greatly. Energy is consumed when a computer operates, but consuming en-
ergy is not the purpose of using a computer.

The two main properties we can measure about the power of a computing
machine are:

1. How much information it can process?
2. How fast can it process?

We will defer considering the second property until later (starting with Chap-
ter 7), but consider the first question here.

1.2.1 Information

Informally, we use information to mean knowledge. But to understand infor-information

mation quantitatively, as something we can measure, we need a more precise
way to think about information.

The way computer scientists measure information is based on how what is
known changes as a result of obtaining the information. The primary unit of
information is a bit . One bit of information halves the amount of uncertainty.bit

It is equivalent to answering a “yes” or “no” question, where either answer is
equally likely beforehand. Before learning the answer, there were two possi-
bilities; after learning the answer, there is one.

We call a question with two possible answers a binary question. Since a bitbinary question

can have two possible values, we often represent the values as 0 and 1.

For example, suppose we perform a fair coin toss but do not reveal the result.
Half of the time, the coin will land “heads”, and the other half of the time the
coin will land “tails”. Without knowing any more information, our chances of
guessing the correct answer are 1

2 . One bit of information would be enough
to convey either “heads” or “tails”; we can use 0 to represent “heads” and 1 to
represent “tails”. So, the amount of information in a coin toss is one bit.

Similarly, one bit can distinguish between the values 0 and 1:

Example 1.1: Dice. How many bits of information are there in the outcome
of tossing a fair six-sided die?

Chapter 1. Computing 5

There are six equally likely possible outcomes, so without any more informa-
tion we have a one in six chance of guessing the correct value. One bit is not
enough to identify the actual number, since one bit can only distinguish be-
tween two values. We could use five binary questions like this:

This is quite inefficient, though, since we need up to five questions to identify
the value (and on average, expect to need 3 1

3 questions.

Can we identify the value with fewer than 5 questions?

Our goal is to identify questions where the “yes” and “no” answers are equally
likely—that way, each answer provides the most information possible. This is
not the case if we start with, “Is the value 6?”, since that answer is expected to
be “yes” only one time in six. Instead, we should start with a question like, “Is
the value at least 4?”. Here, we expect the answer to be “yes” one half of the
time, and the “yes” and “no” answers are equally likely. If the answer is “yes”,
we know the result is 4, 5, or 6. With two more bits, we can distinguish be-
tween these three values (note that two bits is actually enough to distinguish
among four different values, so some information is wasted here). Similarly,
if the answer to the first question is no, we know the result is 1, 2, or 3. We
need two more bits to distinguish which of the three values it is. Thus, with
three bits, we can distinguish all six possible outcomes.

Three bits can convey more information that just six possible outcomes, how-

6 1.2. Measuring Computing Power

ever. In the binary question tree, there are some questions where the answer
is not equally likely to be “yes” and “no” (for example, we expect the answer
to “Is the value 3?” to be “yes” only one out of three times). Hence, we are not
obtaining a full bit of information with each question.

Each bit doubles the number of possibilities we can distinguish, so with three
bits we can distinguish between 2 ∗ 2 ∗ 2 = 8 possibilities. In general, with n

bits, we can distinguish between 2n possibilities. Conversely, distinguishing
among k possible values requires log2 k bits. The logarithm is defined suchlogarithm

that if a = bc then log
b

a = c. Since each bit has two possibilities, we use
the logarithm base 2 to determine the number of bits needed to distinguish
among a set of distinct possibilities. For our six-sided die, log2 6 ≈ 2.58, so
we need approximately 2.58 binary questions. But, questions are discrete: we
can’t ask 0.58 of a question, so we need to use three binary questions.

Trees. Figure 1.1 depicts a structure of binary questions for distinguishing
among eight values. We call this structure a binary tree. We will see manybinary tree

useful applications of tree-like structures in this book.

Computer scientists draw trees upside down. The root is the top of the tree,
and the leaves are the numbers at the bottom (0, 1, 2, . . ., 7). There is a unique
path from the root of the tree to each leaf. Thus, we can describe each of the
eight possible values using the answers to the questions down the tree. For
example, if the answers are “No”, “No”, and “No”, we reach the leaf 0; if the
answers are “Yes”, “No”, “Yes”, we reach the leaf 5.

We can describe any non-negative integer using bits in this way, by just adding
additional levels to the tree. For example, if we wanted to distinguish between
16 possible numbers, we would add a new question, “Is is >= 8?” to the top
of the tree. If the answer is “No”, we use the tree in Figure 1.1 to distinguish
numbers between 0 and 7. If the answer is “Yes”, we use a tree similar to the
one in Figure 1.1, but add 8 to each of the numbers in the questions and the
leaves.

The depth of a tree is the length of the longest path from the root to any leaf.depth

The example tree has depth three. A binary tree of depth d can distinguish up
to 2d different values.

Figure 1.1. Using three bits to distinguish eight possible values.

Chapter 1. Computing 7

Units of Information. One byte is defined as eight bits. Hence, one byte of in-
formation corresponds to eight binary questions, and can distinguish among
28 (256) different values. For larger amounts of information, we use metric
prefixes, but instead of scaling by factors of 1000 they scale by factors of 210

(1024). Hence, one kilobyte is 1024 bytes; one megabyte is 220 (approximately
one million) bytes; one gigabyte is 230 (approximately one billion) bytes; and
one terabyte is 240 (approximately one trillion) bytes.

Exercise 1.1. Draw a binary tree for distinguishing among the sixteen num-
bers 0, 1, 2, . . . , 15 with the minimum possible depth.

Exercise 1.2. Draw a binary tree for distinguishing among the twelve months
of the year with the minimum possible depth.

Exercise 1.3. How many bits are needed:

a. To uniquely identify any currently living human?

b. To uniquely identify any human who ever lived?

c. To identify any location on Earth within one square centimeter?

d. To uniquely identify any atom in the observable universe?

Exercise 1.4. The examples all use binary questions for which there are two
possible answers. Suppose instead of basing our decisions on bits, we based
it on trits where one trit can distinguish between three equally likely values.
For each trit, we can ask a ternary question (a question with three possible
answers).

a. How many trits are needed to distinguish among eight possible values?
(A convincing answer would show a ternary tree with the questions and
answers for each node, and argue why it is not possible to distinguish all
the values with a tree of lesser depth.)

b. [★] Devise a general formula for converting between bits and trits. How
many trits does it require to describe b bits of information?

Exploration 1.1: Guessing Numbers

The guess-a-number game starts with one player (the chooser) picking a num-
ber between 1 and 100 (inclusive) and secretly writing it down. The other
player (the guesser) attempts to guess the number. After each guess, the chooser
responds with “correct” (the guesser guessed the number and the game is
over), “higher” (the actual number is higher than the guess), or “lower” (the
actual number is lower than the guess).

a. Explain why the guesser can receive slightly more than one bit of informa-

8 1.2. Measuring Computing Power

tion for each response.

b. Assuming the chooser picks the number randomly (that is, all values be-
tween 1 and 100 are equally likely), what are the best first guesses? Explain
why these guesses are better than any other guess. (Hint: there are two
equally good first guesses.)

c. What is the maximum number of guesses the second player should need
to always find the number?

d. What is the average number of guesses needed (assuming the chooser picks
the number randomly as before)?

e. [★] Suppose instead of picking randomly, the chooser picks the number
with the goal of maximizing the number of guesses the second player will
need. What number should she pick?

f. [★★] How should the guesser adjust her strategy if she knows the chooser
is picking adversarially?

g. [★★] What are the best strategies for both players in the adversarial guess-
a-number game where chooser’s goal is to pick a starting number that
maximizes the number of guesses the guesser needs, and the guesser’s goal
is to guess the number using as few guesses as possible.

Exploration 1.2: Twenty Questions

The two-player game twenty questions starts with the first player (the an-
swerer) thinking of an object, and declaring if the object is an animal, veg-
etable, or mineral (meant to include all non-living things). After this, the

20Q Game

Image from ThinkGeek

second player (the questioner), asks binary questions to try and guess the ob-
ject the first player thought of. The first player answers each question “yes”
or “no”. The website http://www.20q.net/ offers a web-based twenty questions
game where a human acts as the answerer and the computer as the ques-
tioner. The game is also sold as a $10 stand-alone toy (shown in the picture).

a. How many different objects can be distinguished by a perfect questioner
for the standard twenty questions game?

b. What does it mean for the questioner to play perfectly?

c. Try playing the 20Q game at http://www.20q.net. Did the computer guess
your item?

d. Instead of just “yes” and “no”, the 20Q game offers four different answers:
“Yes”, “No”, “Sometimes”, and “Unknown”. (The website version of the
game also has “Probably”, “Irrelevant”, and “Doubtful”.) If all four answers
were equally likely (and meaningful), how many items could be distin-
guished in 20 questions?

e. For an Animal, the first question 20Q asks is “Does it jump?” (note that
20Q will select randomly among a few different first questions). Is this a
good first question?

f. [★] How many items do you think 20Q has data for?

g. [★★] Speculate on how 20Q could build up its database.

Chapter 1. Computing 9

1.2.2 Representing Data

We can use sequences of bits to represent many kinds of data. All we need to
do is think of the right binary questions for which the bits give answers that
allow us to represent each possible value. Next, we provide examples showing
how bits can be used to represent numbers, poems, and pictures.

Numbers. In the previous section, we saw how to distinguish a set of items
using a tree where each node asks a binary question, and the branches corre-
spond to the “Yes” and “No” answers. A more compact way of writing down
our decisions following the tree is to use 0 to encode a “No” answer, and 1 to
encode a “Yes” answer.

We can describe a path to a leaf by a sequence of 0s and 1s—the “No”, “No”,
“No” path to 0 is encoded as 000, and the “Yes”, “No”, “Yes” path to 5 is en-
coded as 101. This is known as the binary number system. Whereas the deci- binary number system

mal number system uses ten as its base (there are ten decimal digits, and the
positional values increase as powers of ten), the binary system uses two as its
base (there are two binary digits, and the positional values increase as powers
of two).

For example, the binary number 10010110 represents the decimal value 150.
As in the decimal number system, the value of each binary digit depends on
its position:

Binary: 1 0 0 1 0 1 1 0

Value: 27 26 25 24 23 22 21 20

Decimal Value: 128 64 32 16 8 4 2 1

There are only 10 types of people in
the world: those who understand
binary, and those who don’t.
Infamous T-Shirt

By using more bits, we can represent larger numbers. With enough bits, we
can represent any natural number this way. The more bits we have, the larger
the set of possible numbers we can represent. As we saw with the binary de-
cision trees, n bits can be used to represent 2n different numbers.

Discrete Values. We can use a finite sequence of bits to describe any value
that is selected from a countable set of possible values. A set is countable if countable

there is a way to assign a unique natural number to each element of the set.
All finite sets are countable. Some, but not all, infinite sets are countable. For
example, there appear to be more integers than there are natural numbers
since for each natural number, n, there are two corresponding integers, n and
−n. But, the integers are in fact countable. We can enumerate the integers
as: 0, 1,−1, 2,−2, 3,−3, 4,−4, . . . and assign a unique natural number to each
integer in turn.

Other sets, such as the real numbers, are uncountable. Georg Cantor proved
this using a technique known as diagonalization. Suppose the real numbers diagonalization

are enumerable. This means we could list all the real numbers in order, so we
could assign a unique integer to each number. For example, considering just
the real numbers between 0 and 1, our enumeration might be:

10 1.2. Measuring Computing Power

1 .00000000000000 . . .
2 .25000000000000 . . .
3 .33333333333333 . . .
4 .66666666666666 . . .
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

57236 .141592653589793 . . .
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Cantor proved by contradiction that there is no way to enumerate all the real
numbers. The trick is to produce a new real number that is not part of the
enumeration. We can do this by constructing a number whose first digit is
different from the first digit of the first number, whose second digit is differ-
ent from the second digit of the second number, etc. For the example enu-
meration above, we might choose .1468

The kth digit of the constructed number is different from the kth digit of the
number k in the enumeration. Since the constructed number differs in at
least one digit from every enumerated number, it does not match any of the
enumerated numbers exactly. Thus, there is a real number that is not in-
cluded in the enumeration list, and it is impossible to enumerate all the real
numbers.

The property that there are more real numbers than natural numbers has im-
portant implications for what can and cannot be computed, which we return
to in Chapter 12. For now, the important point is that computers can operate
on any inputs that are discrete values. Continuous values, such as real num-
bers, can only be approximated by computers. Next, we consider how two
types of data, text and images, can be represented by computers. The first
type, text, is discrete and can be represented exactly; images are continuous,
and can only be represented approximately.

Text. The set of all possible sequences of characters is countable. One way to
see this is to observe that we could give each possible text fragment a unique
number, and then use that number to identify the item. For example we could
enumerate all texts alphabetically by length (here, we limit the characters to
lowercase letters):

a, b, c, . . ., z, aa, ab, . . ., az, ba, . . ., zz, aaa, . . .

Since we have seen that we can represent all the natural numbers with a se-
quence of bits, so once we have the mapping between each item in the set
and a unique natural number, we can represent all of the items in the set. For
the representation to be useful, though, we usually need a way to construct
the corresponding number for any item directly.

Instead of enumerating a mapping between all possible character sequences
and the natural numbers we need a process for converting any text to a unique
number that represents that text. Suppose we limit our text to characters in
the standard English alphabet. If we include lower-case letters (26), upper-
case letters (26), and punctuation (space, comma, period, newline, semi-colon),
we have 57 different symbols to represent. We can assign a unique number to

Chapter 1. Computing 11

each symbol, and encode the corresponding number with six bits (this leaves
seven values unused since six bits can distinguish 64 values). For example,
we could encode using the mapping shown in Table 1.1. The first bit answers
the question: “Is it an uppercase letter after F or a special character?”. When
the first bit is 0, the second bit answers the question: “Is it after p?”.

a 000000
b 000001
c 000010
d 000011
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

p 001111
q 010000
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

z 011001
A 011010
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

F 011111

G 100000
H 100001
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Z 110011
space 110100

, 110101
. 110110

newline 110111
; 111000

unused 111001
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

unused 111111

Table 1.1. Encoding characters using bits.
This encoding is not the one typically used by computers. One commonly used encod-
ing known as ASCII (the American Standard Code for Information Interchange) uses
seven bits so that 128 different symbols can be encoded. The extra symbols are used to
encode more special characters.

Once we have a way of mapping each individual letter to a fixed-length bit
sequence, we could write down any poem by just concatenating the bits en-
coding each letter. So, “The” would be encoded as 101101000111000100. We
could write down text of length n that is written in the 57-symbol alphabet
using this encoding using 6n bits. To convert the number back into text, we
just need to invert the mapping, replacing each group of six bits with the cor-
responding letter.

Rich Data. We can use bit sequences to represent complex data like pictures,
movies, and audio recordings too. Consider a simple black and white picture:

Since the picture is divided into discrete squares known as pixels, we could pixel

encode this as a sequence of bits by using one bit to encode the color of each
pixel (for example, using 1 to represent black, and 0 to represent white). This
image is 16x16, so has 256 pixels total. We could represent the image using a
sequence of 256 bits (starting from the top left corner):

12 1.2. Measuring Computing Power

0000011111100000

0000100000010000

0011000000001100

0010000000000100

⋅ ⋅ ⋅

What about complex pictures that are not divided into discrete squares or a
fixed number of colors, like Van Gogh’s Starry Night?

Different wavelengths of electromagnetic radiation have different colors. For
example, light with wavelengths between 625 and 730 nanometers appears
red. But, each wavelength of light has a slightly different color; for exam-
ple, light with wavelength 650 nanometers would be a different color (albeit
imperceptible to humans) from light of wavelength 650.0000001 nanometers.
There are arguably infinitely many different colors, corresponding to different
wavelengths of visible light.1 Since the colors are continuous and not discrete,
there is no way to map each color to a unique, finite bit sequence.

On the other hand, the human eye and brain have limits. We cannot actually
perceive infinitely many different colors; at some point the wavelengths are
too close for us to distinguish. Ability to distinguish colors varies, but most
humans can perceive only a few million different colors. The set of colors that
can be distinguished by a typical human is finite; any finite set is countable,
so we can map each distinguishable color to a unique bit sequence.

A common way to represent color is to break it into its three primary com-
ponents (red, green, and blue), and record the intensity of each component.
The more bits available to represent a color, the more different colors that can
be represented.

1Whether there are actually infinitely many different colors comes down to the question of
whether the space-time of the universe is continuous or discrete. Certainly in our common per-
ception it seems to be continuous—we can imagine dividing any length into two shorter lengths.
In reality, this may not be the case at extremely tiny scales. It is not known if time can continue
to be subdivided below 10−40 of a second.

Chapter 1. Computing 13

Thus, we can represent a picture by recording the approximate color at each
point. If space in the universe is continuous, there are infinitely many points.
But, as with color, once the points get smaller than a certain size they are
imperceptible. We can approximate the picture by dividing the canvas into
small regions and sampling the average color of each region. The smaller the
sample regions, the more bits we will have and the more detail that will be
visible in the image. With enough bits to represent color, and enough sample
points, we can represent any image as a sequence of bits.

Summary. We can use sequences of bits to represent any natural number ex-
actly, and hence, represent any member of a countable set using a sequence
of bits. The more bits we use the more different values that can be repre-
sented; with n bits we can represent 2n different values.

We can also use sequences of bits to represent rich data like images, audio,
and video. Since the world we are trying to represent is continuous there
are infinitely many possible values, and we cannot represent these objects
exactly with any finite sequence of bits. However, since human perception
is limited, with enough bits we can represent any of these adequately well.
Finding ways to represent data that are both efficient and easy to manipulate
and interpret is a constant challenge in computing. Manipulating sequences
of bits is awkward, so we need ways of thinking about bit-level representa-
tions of data at higher levels of abstraction. Chapter 5 focuses on ways to
manage complex data.

1.2.3 Growth of Computing Power

The number of bits a computer can store gives an upper limit on the amount
of information it can process. Looking at the number of bits different com-
puters can store over time gives us a rough indication of how computing
power has increased. Here, we consider two machines: the Apollo Guidance
Computer and a modern laptop.

The Apollo Guidance Computer was developed in the early 1960s to control
the flight systems of the Apollo spacecraft. It might be considered the first per-
sonal computer, since it was designed to be used in real-time by a single op-
erator (an astronaut in the Apollo capsule). Most earlier computers required
a full room, and were far too expensive to be devoted to a single user; instead,
they processed jobs submitted by many users in turn. Since the Apollo Guid-
ance Computer was designed to fit in the Apollo capsule, it needed to be small
and light. Its volume was about a cubic foot and it weighed 70 pounds. The

Apollo Guidance ComputerAGC was the first computer built using integrated circuits, miniature elec-
tronic circuits that can perform simple logical operations such as performing
the logical and of two values. The AGC used about 4000 integrated circuits,
each one being able to perform a single logical operation and costing $1000.
The AGC consumed a significant fraction of all integrated circuits produced
in the mid-1960s, and the project spurred the growth of the integrated circuit
industry.

The AGC had 552 960 bits of memory (of which only 61 440 bits were modifi-

14 1.3. Science, Engineering, and Liberal Art

able, the rest were fixed). The smallest USB flash memory you can buy today
(from SanDisk in December 2008) is the 1 gigabyte Cruzer for $9.99; 1 giga-
byte (GB) is 230 bytes or approximately 8.6 billion bits, about 140 000 times the
amount of memory in the AGC (and all of the Cruzer memory is modifiable).
A typical low-end laptop today has 2 gigabytes of RAM (fast memory close to
the processor that loses its state when the machine is turned off) and 250 gi-
gabytes of hard disk memory (slow memory that persists when the machine is
turned off); for under $600 today we get a computer with over 4 million times
the amount of memory the AGC had.

Improving by a factor of 4 million corresponds to doubling 22 times (222 =
4, 194, 304). The amount of computing power approximately doubled every
two years between the AGC in the early 1960s and a modern laptop today
(2009). This property of exponential improvement in computing power is
known as Moore’s Law. Gordon Moore, a co-founder of Intel, observed inMoore’s law is a violation of

Murphy’s law. Everything gets
better and better.

Gordon Moore

1965 than the number of components that can be built in integrated circuits
for the same cost was approximately doubling every year (revisions to Moore’s
observation have put the doubling rate at approximately 18 months instead
of one year). This progress has been driven by the growth of the computing
industry, increasing the resources available for designing integrated circuits.
Another driver is that today’s technology is used to design the next technology
generation. Improvement in computing power has followed this exponential
growth remarkably closely over the past 40 years, although there is no law that
this growth must continue forever.

Although our comparison between the AGC and a modern laptop shows an
impressive factor of 4 million improvement, it is much slower than Moore’s
law would suggest. Instead of 22 doublings in power since 1963, there should
have been 30 doublings (using the 18 month doubling rate). This would pro-
duce an improvement of one billion times instead of just 4 million. The rea-
son is our comparison is very unequal relative to cost: the AGC was the world’s
most expensive small computer of its time, reflecting many millions of dollars
of government funding. Computing power available for similar funding today
is well over a billion times more powerful than the AGC.

1.3 Science, Engineering, and Liberal Art

Much ink and many bits have been spent debating whether computer science
is an art, an engineering discipline, or a science. The confusion stems from
the nature of computing as a new field that does not fit well into existing si-
los. In fact, computer science fits into all three kingdoms, and it is useful to
approach computing from all three perspectives.

Science. Traditional science is about understanding nature through obser-
vation. The goal of science is to develop general and predictive theories that
allow us to understand aspects of nature deeply enough to make accurate
quantitative predications. For example, Newton’s law of universal gravitation
makes predictions about how masses will move. The more general a theory is

Chapter 1. Computing 15

the better. A key, as yet unachieved, goal of science is to find a universal law
that can describe all physical behavior at scales from the smallest subparticle
to the entire universe, and all the bosons, muons, dark matter, black holes,
and galaxies in between. Science deals with real things (like bowling balls,
planets, and electrons) and attempts to make progress toward theories that
predict increasingly precisely how these real things will behave in different
situations.

Computer science focuses on artificial things like numbers, graphs, func-
tions, and lists. Instead of dealing with physical things in the real world, com-
puter science concerns abstract things in a virtual world. The numbers we
use in computations often represent properties of physical things in the real
world, and with enough bits we can model real things with arbitrary preci-
sion. But, since our focus is on abstract, artificial things rather than physical
things, computer science is not a traditional natural science but a more ab-
stract field like mathematics. Like mathematics, computing is an essential
tool for modern science, but when we study computing on artificial things it
is not a natural science itself.

In a deeper sense, computing pervades all of nature. A long term goal of com-
puter science is to develop theories that explain how nature computes. One
example of computing in nature comes from biology. Complex life exists be-
cause nature can perform sophisticated computing. People sometimes de-
scribe DNA as a “blueprint”, but it is really much better thought of as a pro-
gram. Whereas a blueprint describes what a building should be when it is
finished, giving the dimensions of walls and how they fit together, the DNA of
an organism encodes a process for growing that organism. A human genome
is not a blueprint that describes the body plan of a human, it is a program that
turns a single cell into a complex human given the appropriate environment.
The process of evolution (which itself is an information process) produces
new programs, and hence new species, through the process of natural selec-
tion on mutated DNA sequences. Understanding how both these processes
work is one of the most interesting and important open scientific questions,
and it involves deep questions in computer science, as well as biology, chem-
istry, and physics.

The questions we consider in this book focus on the question of what can and
cannot be computed. This is both a theoretical question (what can be com-
puted by a given theoretical model of a computer, the focus of Chapter 12),
and a pragmatic one (what can be computed by physical things in our uni-
verse, the focus of Chapter 13). Scientists study the world as it is;

engineers create the world that
never has been.
Theodore von Kármán

Engineering. Engineering is about making useful things. Engineering is
often distinguished from crafts in that engineers use scientific principles to
create their designs, and focus on designing under practical constraints. As
William Wulf and George Fisher put it:2

Whereas science is analytic in that it strives to understand nature, or
what is, engineering is synthetic in that it strives to create. Our own

2William Wulf and George Fisher, A Makeover for Engineering Education, Issues in Science and
Technology, Spring 2002 (http://www.issues.org/18.3/p wulf.html).

16 1.3. Science, Engineering, and Liberal Art

favorite description of what engineers do is “design under constraint”.
Engineering is creativity constrained by nature, by cost, by concerns of
safety, environmental impact, ergonomics, reliability, manufactura-
bility, maintainability–the whole long list of such “ilities”. To be sure,
the realities of nature is one of the constraint sets we work under, but
it is far from the only one, it is seldom the hardest one, and almost
never the limiting one.

Computer scientists do not face the natural constraints faced by civil and me-
chanical engineers—computer programs are massless, odorless, and taste-
less, so the kinds of physical constraints like gravity that impose limits on
bridge designs are not relevant to most computer scientists. As we saw from
the Apollo Guidance Computer comparison, practical constraints on com-
puting power change rapidly — the one billion times improvement in com-
puting power is unlike any change in physical materials3. Although we may
need to worry about manufacturability and maintainability of storage media
(such as the disk we use to store a program), our focus as computer scientists
is on the abstract bits themselves, not how they are stored.

Computer scientists, however, do face many constraints. A primary constraint
is the capacity of the human mind—there is a limit to how much information
a human can keep in mind at one time. As computing systems get more com-
plex, there is no way for a human to understand the entire system at once. To
build complex systems, we need techniques for managing complexity. The
primary tool computer scientists use to manage complexity is abstraction.abstraction

Abstraction is a way of giving a name to something in a way that allows us
to hide unnecessary details. By using carefully designed abstractions, we can
construct complex systems with reliable properties while limiting the amount
of information a human designer needs to keep in mind at any one time.

Liberal Art. The notion of the liberal arts emerged during the middle ages to
distinguish education for the purpose of expanding the intellects of free peo-
ple from the illiberal arts such as medicine and carpentry that were pursued
for economic purposes. The liberal arts were intended for people who did
not need to learn an art to make a living, but instead had the luxury to pursue
purely intellectual activities for their own sake. The traditional seven liberalI must study politics and war that

my sons may have liberty to study
mathematics and philosophy. My
sons ought to study mathematics

and philosophy, geography,
natural history, naval architecture,

navigation, commerce, and
agriculture, in order to give their

children a right to study painting,
poetry, music, architecture,

statuary, tapestry, and porcelain.
John Adams, 1780

arts started with the Trivium (three roads), focused on language:4

• Grammar — “the art of inventing symbols and combining them to ex-
press thought”

• Rhetoric — “the art of communicating thought from one mind to an-
other, the adaptation of language to circumstance”

• Logic — “the art of thinking”

The Trivium was followed by the Quadrivium, focused on numbers:

3For example, the highest strength density material available today, carbon nanotubes, are
perhaps 300 times stronger than the best material available 50 years ago.

4 The quotes defining each liberal art are from Miriam Joseph (edited by Marguerite McGlinn),
The Trivium: The Liberal Arts of Logic, Grammar, and Rhetoric, Paul Dry Books, 2002.

Chapter 1. Computing 17

• Arithmetic — “theory of number”
• Geometry — “theory of space”
• Music — “application of the theory of number”
• Astronomy — “application of the theory of space”

All of these have strong connections to computer science, and we will touch
on each of them to some degree in this book.

Language is essential to computing since we use the tools of language to de-
scribe information processes. The next chapter discusses the structure of lan-
guage and throughout this book we consider how to efficiently use and com-
bine symbols to express meanings. Rhetoric encompasses communicating
thoughts between minds. In computing, we are not typically communicating
directly between minds, but we see many forms of communication between
entities: interfaces between components of a program, as well as protocols
used to enable multiple computing systems to communicate (for example,
the HTTP protocol defines how a web browser and web server interact), and
communication between computer programs and human users. The primary
tool for understanding what computer programs mean, and hence, for con-
structing programs with particular meanings, is logic. Hence, the traditional
trivium liberal arts of language and logic permeate computer science.

The connections between computing and the quadrivium arts are also perva-
sive. We have already seen how computers use sequences of bits to represent
numbers. Chapter 6 examines how machines can perform basic arithmetic
operations. Geometry is essential for computer graphics, and graph theory is
also important for computer networking. The harmonic structures in music
have strong connections to the recursive definitions introduced in Chapter 4
and recurring throughout this book.5 Unlike the other six liberal arts, astron-
omy is not directly connected to computing, but computing is an essential
tool for doing modern astronomy.

Although learning about computing qualifies as an illiberal art (that is, it can
have substantial economic benefits for those who learn it well), computer sci-
ence also covers at least six of the traditional seven liberal arts.

1.4 Summary and Roadmap

Computer scientists think about problems differently. When confronted with
a problem, a computer scientist does not just attempt to solve it. Instead,
computer scientists think about a problem as a mapping between its inputs
and desired outputs, develop a systematic sequence of steps for solving the
problem for any possible input, and consider how the number of steps re-
quired to solve the problem scales as the input size increases.

The rest of this book presents a whirlwind introduction to computer science.
We do not cover any topics in great depth, but rather provide a broad picture

5See Douglas Hofstadter’s Gödel, Escher, Bach for lots of interesting examples of connections
between computing and music.

18 1.4. Summary and Roadmap

of what computer science is, how to think like a computer scientist, and how
to solve problems.

Part I: Defining Procedures. Part I focuses on how to define procedures
that perform desired computations. The nature of the computer forces so-
lutions to be expressed precisely in a language the computer can interpret.
This means a computer scientist needs to understand how languages work
and exactly what phrases in a language mean. Natural languages like English
are too complex and inexact for this, so we need to invent and use new lan-
guages that are simpler, more structured, and less ambiguously defined than
natural languages. Chapter 2 focuses on language, and during the course of
this book we will use language to precisely describe processes and languages
are interpreted.

The computer frees humans from having to actually carry out the steps needed
to solve the problem. Without complaint, boredom, or rebellion, it dutifully
executes the exact steps the program specifies. And it executes them at a
remarkable rate — billions of simple steps in each second on a typical lap-
top. This changes not just the time it takes to solve a problem, but qualita-
tively changes the kinds of problems we can solve, and the kinds of solutions
worth considering. Problems like sequencing the human genome, simulat-
ing the global climate, and making a photomosaic not only could not have
been solved without computing, but perhaps could not have even been en-
visioned. Chapter 3 introduces programming, and Chapter 4 develops some
techniques for constructing programs that solve problems. To represent more
interesting problems, we need ways to manage more complex data. Chapter 5
concludes Part I by exploring ways to represent data and define procedures
that operate on complex data.

Part II: Analyzing Procedures. Part II considers the problem of estimating
the cost required to execute a procedure. This requires understanding how
machines can compute (Chapter 6), and mathematical tools for reasoning
about how cost grows with the size of the inputs to a procedure (Chapter 7).
Chapter 8 provides some extended examples that apply these techniques.

Part III: Improving Expressiveness. The techniques from Part I and II are
sufficient for describing all computations. Our goal, however, it to be able
to define concise, elegant, and efficient procedures for performing desired
computations. Part III presents techniques that enable more expressive pro-
cedures.

Part IV: The Limits of Computing. We hope that by the end of Part III, read-
ers will feel confident that they could program a computer to do just about
anything. In Part IV, we consider the question of what can and cannot be
done by a mechanical computer. A large class of interesting problems cannot
be solved by any computer, even with unlimited time and space. Chapter 13
introduces the most important open problem in computer science. It con-
cerns the question of whether finding an answer is harder than checking if a
given answer is correct; it seems obvious that checking an answer should be
easier, but for a very interesting class of problems no one has been able to
prove that this is the case.

Chapter 1. Computing 19

Themes. Much of the book will revolve around three very powerful ideas that
are prevalent throughout computing:

Recursive definitions. A recursive definition define a thing in terms of smaller
instances of itself. A simple example is defining your ancestors as (1) your
parents, and (2) the ancestors of your ancestors. Recursive definitions can
define an infinitely large set with a small description. They also provide a
powerful technique for solving problems by breaking a problem into solving
a simple instance of the problem and showing how to solve a larger instance
of the problem by using a solution to a smaller instance. We use recursive def-
initions to define infinite languages in Chapter 2, to solve problems in Chap-
ter 4, to build complex data structures in Chapter 5. In later chapters, we see
how language interpreters themselves can be defined recursively.

Universality. Computers are distinguished from other machines in that their
behavior can be changed by a program. Procedures themselves can be de-
scribed using just bits, so we can write procedures that process procedures
as inputs and that generate procedures as outputs. Considering procedures
as data is both a powerful problem solving tool, and a useful way of thinking
about the power and fundamental limits of computing. We introduce the use
of procedures as inputs and outputs in Chapter 4, see how generated proce-
dures can be packaged with state to model objects in Chapter 10. One of the
most fundamental results in computing is that any machine that can perform
a few simple operations is powerful enough to perform any computation, and
in this deep sense, all mechanical computers are equivalent. We introduce a
model of computation in Chapter 6, and reason about the limits of computa-
tion in Chapter 12.

Abstraction. Abstraction is a way of hiding details by giving things names. We
use abstraction to manage complexity. Good abstractions hide unnecessary
details so they can be used to build complex systems without needing to un-
derstand all the details of the abstraction at once. We introduce procedural
abstraction in Chapter 4, data abstraction in Chapter 5, the digital abstrac-
tion in Chapter 6, abstraction using objects in Chapter 10, and many other
examples of abstraction throughout this book.

Throughout this book, these three themes will recur recursively, universally,
and abstractly as we explore the art and science of how to instruct computing
machines to perform useful tasks, reason about the resources needed to ex-
ecute a particular procedure, and understand the fundamental and practical
limits on what computers can do.

