
5
Data

Exercise 5.1. Describe the type of each of these expressions.

a. 17

Solution. Number

b. (lambda (a) (> a 0))

Solution. A procedure of type: Number→ Boolean

c. ((lambda (a) (> a 0)) 3)

Solution. Boolean

d. (lambda (a) (lambda (b) (> a b)))

Solution. A procedure of type: Number→ (Number→ Boolean). That is, the result of ap-
plying this procedure to a Number would be a procedure that takes a Number as input and
outputs a Boolean.

e. (lambda (a) a)

Solution. T → T. A procedure that takes any type as its input, and produces as its output a
value of the same type as the input.

Exercise 5.2. Define or identify a procedure that has the given type.

a. Number× Number→ Boolean

Solution. > (the built-in greater-than procedure takes two Numbers as inputs and outputs a
Boolean)

b. Number→ Number

Solution. − (the built-in negation procedure takes one Number input and outputs a Number)

c. (Number→ Number)× (Number→ Number)
→ (Number→ Number)

Solution. The fcompose function from Section 4.2.1 takes as inputs two functions from Num-
ber to Number, and outputs a function that takes a Number as input and outputs a Number.

(lambda (f g) (lambda (x) (g (f x))))

d. Number→ (Number→ (Number→ Number))

Solution.

(lambda (a) (lambda (b) (lambda (c) (+ a b c))))

2 Exercises and Solutions

Exercise 5.3. Suppose the following definition has been executed:

(define tpair
(cons (cons (cons 1 2) (cons 3 4))

5))

Draw the structure defined by tpair , and give the value of each of the following expressions.

Solution. The expression for tpair creates a pair where the first part of the pair is a pair. That
pair has the pair (1 . 2) as its first part, and the pair (3 . 4) as its second part. The second part of
the main pair is the number 5.

 5tpair

1 2 3 4

a. (cdr tpair)

Solution. 5

b. (car (car (car tpair)))

Solution. 1

c. (cdr (cdr (car tpair)))

Solution. 4

d. (cdr (cdr tpair))

Solution. Error: the result of (cdr tpair) is the scalar value 5, so the attempted to apply cdr to
this value results in an error.

Exercise 5.4. Write expressions that extract each of the four elements from fstruct defined by
(define fstruct (cons 1 (cons 2 (cons 3 4)))).

Solution.

• (car fstruct) evaluates to 1.

• (car (cdr fstruct)) evaluates to 2.

• (car (cdr (cdr fstruct))) evaluates to 3.

• (cdr (cdr (cdr fstruct))) evaluates to 4.

Chapter 5. Data— Exercises and Solutions 3

Exercise 5.5. Give an expression that produces the structure shown below.

Solution. This expression produces the structure shown:

(cons 1 (cons (cons 2 3) (cons 4 (cons 5 6))))

Exercise 5.6. Convince yourself the definitions of scons, scar , and scdr above work as expected
by following the evaluation rules to evaluate

(scar (scons 1 2))

Solution. The expression, (scar (scons 1 2)) is an ApplicationExpression, so the first step is to
evaluate all the subexpressions. The first subexpression, scar , is a name expression that eval-
uates to the procedure, (lambda (pair) (pair true)). The second subexpression, (scons 1 2) is
an ApplicationExpression. After evaluating all its subexpressions, the next step is to apply the
value of the first subexpression, (lambda (a b) (lambda (w) (if w a b))), to the values of the other
subexpressions which are the numbers 1 and 2. To evaluate the application of the compound
procedure, we evaluate its body with the input values bound to the names of the parameters. So,
a will have value 1, and b will have value 2, and the result of evaluating the body expression is
(lambda (w) (if w 1 2)).

Next, we continue evaluating the outer application expression by applying the value of the first
subexpression, scar , to the value of the second subexpression. The value of scar is (lambda
(pair) (pair true)) and the value of the second subexpression is (lambda (w) (if w 1 2)). So, we
follow the application rule for compound procedures. The name pair is associated with the
value, (lambda (w) (if w 1 2)). Then we evaluate the body expression, (pair true). Substituting
the value of pair , this becomes ((lambda (w) (if w 1 2)) true).

Following the evaluation rules, we associate w with the value true and evaluate the body, which
is the if expression, (if w 1 2). This evaluates to 1, which is the first part of the pair created using
scons, so is consistent with the desired behavior of scons and scar .

Exercise 5.7. Show the corresponding definitions of tcar and tcdr that provide the pair selection
behavior for a pair created using tcons defined as:

(define (tcons a b) (lambda (w) (if w b a)))

Solution. Since tcons reverses the order of a and b, we need to define tcar and tcdr as:

(define (tcar pair) (pair false))
(define (tcdr pair) (pair true))

Exercise 5.8. Define a procedure that constructs a quintuple and procedures for selecting the
five elements of a quintuple.

4 Exercises and Solutions

Solution. The most natural way is to use the procedures we defined for making quadruples:

(define (make-quintuple a b c d e) (cons a (make-quadruple b c d e)))
(define (quintuple-first q) (car q))
(define (quintuple-second q) (quad-first (cdr q)))
(define (quintuple-third q) (quad-second (cdr q)))
(define (quintuple-fourth q) (quad-third (cdr q)))
(define (quintuple-fifth q) (quad-fourth (cdr q)))

Exercise 5.9. Another way of thinking of a triple is as a Pair where the first cell is a Pair and the
second cell is a scalar. Provide definitions of make-triple, triple-first , triple-second, and triple-
third for this construct.

Solution.

(define (make-triple a b c) (cons (cons a b) c))
(define (triple-first t) (car (car t)))
(define (triple-second t) (cdr (car t)))
(define (triple-third t) (cdr t))

Exercise 5.10. For each of the following expressions, explain whether or not the expression eval-
uates to a List. Check your answers with a Scheme interpreter by using the list? procedure.

a. null

Solution. Yes, null is a List by the direct definition of a List.

b. (cons 1 2)

Solution. No, (cons 1 2) is not a List, since it is a Pair but the second part of the Pair is 2 which
is not a List.

c. (cons null null)

Solution. Yes, (cons null null) is a List, since it is a Pair where the second part of the Pair is
null which is a List.

d. (cons (cons (cons 1 2) 3) null)

Solution. Yes, (cons (cons (cons 1 2) 3) null) is a List, since it is a Pair where the second part of
the Pair is null which is a List.

e. (cdr (cons 1 (cons 2 (cons null null))))

Solution. Yes, (cdr (cons 1 (cons 2 (cons null null)))) is a List. The cdr application evlauates
to the second part of the input Pair, (cons 2 (cons null null)). This is a List, since it is a Pair,
where the second part of the Pair, (cons null null) is a List.

f. (cons (list 1 2 3) 4)

Solution. No, (cons (list 1 2 3) 4) is not a List since the second part of the Pair is the scalar
value 4, which is not a List.

Exercise 5.11. Define a procedure is-list? that takes one input and outputs true if the input is a
List, and false otherwise. Your procedure should behave identically to the built-in list? proce-
dure, but you should not use list? in your definition.

Chapter 5. Data— Exercises and Solutions 5

Solution. Here’s a straightforward we do define is-list?:

(define (is-list? p)
(if (null? p)

true
(if (pair? p)

(is-list? (cdr p))
false)))

We can make a simpler definition, that follows closely the way we defined a List, by using the
and and or special forms:

(define (is-list? p)
(or (null? p) (and (pair? p) (is-list? (cdr p)))))

Note that this relies on an important property of the or and and special forms, which is that
unlike an ApplicationExpression, they do not evaluate all the subexpressions. Instead, the or
special form expression (or p q) behaves like, (if p true q), so q is not evaluated if the first ex-
pression evaluates to true. The and special form expression (and p q) behaves like, (if p q false).
In the is-list? definition, this is why (and (pair? p) (is-list? (cdr p))) evaluates correctly. If (pair?
p) evaluates to false, the second subexpression is never evaluated. If it were evaluated when p is
not a Pair, this would produce an error when the expression (cdr p) is evaluated on an input that
is not a Pair.

Exercise 5.12. Define a procedure list-max that takes a List of non-negative numbers as its in-
put and produces as its result the value of the greatest element in the List (or 0 if there are no
elements in the input List). For example, (list-max (list 1 1 2 0)) should evaluate to 2.

Solution. Here is a straightforward definition:

(define (list-max p)
(if (null? p)

0
(if (> (list-max (cdr p)) (car p))

(list-max (cdr p))
(car p))))

This is correct, but isn’t a great way to define list-max since it requires lost of duplicate work. The
subexpression, (list-max (cdr p)) may involve a lot of work for a long list, but if the maximum
element of the list is at the end of the list, this expression is evaluated twice for each element.

A better definition would avoid this duplicate work, by using the bigger procedure (from Chapter
3):

(define (bigger a b) (if (> a b) a b))

(define (list-max p)
(if (null? p)

0
(bigger (car p) (list-max (cdr p)))))

This definition is better than the previous one in at least three ways: it is shorter, it is easier to

6 Exercises and Solutions

understand and be convinced that it is correct, and it is more efficient.

Exercise 5.13. Use list-accumulate to define list-max (from Exercise ??).

Solution.

(define (list-max p)
(list-accumulate bigger 0 p))

If bigger is not already defined,

(define (list-max p)
(list-accumulate (lambda (a b) (if (> a b) a b)) 0 p))

Exercise 5.14. [??] Use list-accumulate to define is-list? (from Exercise ??).

Solution. This isn’t really possible! The problem is list-accumulate assumes its input is a List. Its
alternate clause, (f (car p) (list-accumulate f base (cdr p))) includes (car p) which will produce
an error if p is not a Pair. But, if the input to is-list? is not a List, then at some point the error
must be produced. So, we could use list-accumulate to define a procedure that evaluates to true
when its input is a List, but produces an error otherwise:

(define (is-list-or-error? p)
(list-accumulate (lambda (a b) true) true p))

A procedure that evaluates to ture on valid Lists and produces an error for non-list inputs, though,
isn’t very useful.

Exercise 5.15. Define a procedure list-last-element that takes as input a List and outputs the last
element of the input List. If the input List is empty, list-last-element should produce an error.

Solution. A natural way to define list-last-element is:

(define (last-list-element p)
(if (null? (cdr p))

(car p)
(last-list-element (cdr p))))

This satisfies the description above. When it is applied to null, though, the error it produces is
not very helpful: cdr: expects argument of type ¡pair¿; given ().

A better definition of list-last-element would produce a more helpful error message:

(define (last-list-element p)
(if (null? p)

(error "Cannot apply last-list-element to empty list.")
(if (null? (cdr p))

(car p)
(last-list-element (cdr p)))))

Exercise 5.16. Define a procedure list-ordered? that takes two inputs, a test procedure and a
List. It outputs true if all the elements of the List are ordered according to the test procedure. For
example, (list-ordered? < (list 1 2 3)) evaluates to true, and (list-ordered? < (list 1 2 3 2)) evaluates

Chapter 5. Data— Exercises and Solutions 7

to false. Hint: think about what the output should be for the empty list.

Solution.

(define (list-ordered? cf p)
(if (null? p)

true
(if (null? (cdr p))

true
(if (cf (car p) (car (cdr p)))

(list-ordered? cf (cdr p))
false))))

We can create a more concise definition using the or and and special forms:

(define (list-ordered? cf p)
(or (null? p)

(null? (cdr p))
(and (cf (car p) (car (cdr p))) (list-ordered? cf (cdr p)))))

Exercise 5.17. Define a procedure list-increment that takes as input a List of numbers, and
produces as output a List containing each element in the input List incremented by one. For
example, (list-increment 1 2 3) evaluates to (2 3 4).

Solution. Without using list-map:

(define (list-increment p)
(if (null? p)

null
(cons (+ 1 (car p)) (list-increment (cdr p)))))

Using list-map:

(define (list-increment p)
(list-map (lambda (n) (+ n 1)) p))

Exercise 5.18. Use list-map and list-sum to define list-length:

(define (list-length p) (list-sum (list-map p)))

Solution. We need to replace each element in the list with the value 1:

(define (list-length p) (list-sum (list-map (lambda (v) 1) p)))

Exercise 5.19. Define a procedure list-filter-even that takes as input a List of numbers and pro-
duces as output a List consisting of all the even elements of the input List.

Solution. Here’s a definition without using list-filter :

8 Exercises and Solutions

(define (list-filter-even p)
(if (null? p)

null
(if (even? (car p))

(cons (car p) (list-filter-even (cdr p)))
(list-filter-even (cdr p)))))

Using list-filter , a shorter definition is possible:

(define (list-filter-even p)
(list-filter even? p))

Exercise 5.20. Define a procedure list-remove that takes two inputs: a test procedure and a List.
As output, it produces a List that is a copy of the input List with all of the elements for which the
test procedure evaluates to true removed. For example, (list-remove (lambda (x) (= x 0)) (list 0 1
2 3)) should evaluates to the List (1 2 3).

Solution. One way to define list-remove is similar to how we defined list-filter but switching the
clauses:

(define (list-remove test p)
(list-accumulate

(lambda (el rest) (if (test el) rest (cons el rest)))
null
p))

A more clever approach would use list-filter :

(define (list-remove test p)
(list-filter (lambda (n) (not (test n))) p))

Or, using fcompose from Chapter 2:

(define (list-remove test p)
(list-filter (fcompose test not) p))

Exercise 5.21. [??] Define a procedure list-unique-elements that takes as input a List and pro-
duces as output a List containing the unique elements of the input List. The output List should
contain the elements in the same order as the input List, but should only contain the first ap-
pearance of each value in the input List.

Solution. First, we define a procedure list-contains? that takes as inputs a value and a list and
evaluates to true if and only if the list contains at least one element equal to the input value:

(define (list-contains? el p)
(if (null? p)

false
(if (equal? el (car p))

true
(list-contains? el (cdr p)))))

Using list-contains?, we define list-unique-elements:

Chapter 5. Data— Exercises and Solutions 9

(define (list-unique-elements p)
(if (null? p)

null
(if (list-contains? (car p) (cdr p))

(list-unique-elements (list-filter (lambda (el) (not (equal? el (car p)))) p))
(cons (car p) (list-unique-elements (cdr p))))))

The trickiest part is using list-filter in the consequence clause of the second if expression. This
is necessary since we need to remove all instances of (car p) from the list for the recursive call.
Otherwise, a non-unique element would still be included once the last instance of that element
is reached!

Exercise 5.22. Define the list-reverse procedure using list-accumulate.

Solution.

(define (list-reverse p)
(list-accumulate (lambda (el lst) (list-append lst (list el))) null p))

Exercise 5.23. Define factorial using intsto.

Solution.

(define (factorial n)
(apply ∗ (intsto n)))

Exercise 5.24. [?] Define a procedure deep-list-map that behaves similarly to list-map but on
deeply nested lists. It should take two parameters, a mapping procedure, and a List (that may
contain deeply nested Lists as elements), and outputs a List with the same structure as the input
List with each value mapped using the mapping procedure.

Solution.

(define (deep-list-map f p)
(if (null? p)

null
(cons
(if (list? (car p))

(deep-list-map f (car p))
(f (car p)))

(deep-list-map f (cdr p)))))

Exercise 5.25. [?] Define a procedure deep-list-filter that behaves similarly to list-filter but on
deeply nested lists.

Solution.

10 Exercises and Solutions

(define (deep-list-filter f p)
(if (null? p)

null
(if (list? (car p))

(cons (deep-list-filter f (car p))
(deep-list-filter f (cdr p)))

(if (f (car p))
(cons (car p) (deep-list-filter f (cdr p)))
(deep-list-filter f (cdr p))))))

