
7
Cost

A LISP programmer knows the value of everything, but the cost of nothing.
Alan Perlis

I told my dad that someday I’d have a computer that I could write programs on. He said that would
cost as much as a house. I said, “Well, then I’m going to live in an apartment.”

Steve Wozniak

This chapter develops tools for reasoning about the cost of evaluating a given
expression. Predicting the cost of executing a procedure has practical value (for
example, we can estimate how much computing power is needed to solve a par-
ticular problem or decide between two possible implementations), but also pro-
vides deep insights into the nature of procedures and problems.

The most commonly used cost metric is time. Other measures of cost include
the amount of memory needed and the amount of energy consumed. Indirectly,
these costs can often be translated into money: the rate of transactions a service
can support, or the price of the computer needed to solve a problem.

7.1 Empirical Measurements
We can measure the cost of evaluating a given expression empirically. If we are
primarily concerned with time, we could just use a stopwatch to measure the
evaluation time. For more accurate results, we use the built-in (time Expression)
special form.1 Evaluating (time Expression) produces the value of the input ex-
pression, but also prints out the time required to evaluate the expression (shown
in our examples using slanted font). It prints out three time values:

cpu time
The time in milliseconds the processor ran to evaluate the expression. CPU
is an abbreviation for “central processing unit”, the computer’s main pro-
cessor.

real time
The actual time in milliseconds it took to evaluate the expression. Since
other processes may be running on the computer while this expression
is evaluated, the real time may be longer than the CPU time, which only
counts the time the processor was working on evaluating this expression.

1The time construct must be a special form, since the expression is not evaluated before entering
time as it would be with the normal application rule. If it were evaluated normally, there would be
no way to time how long it takes to evaluate, since it would have already been evaluated before time
is applied.

126 7.1. Empirical Measurements

gc time
The time in milliseconds the interpreter spent on garbage collection to eval-
uate the expression. Garbage collection is used to reclaim memory that is
storing data that will never be used again.

For example, using the definitions from Chapter 5,

(time (solve-pegboard (board-remove-peg (make-board 5)
(make-position 1 1))))

prints: cpu time: 141797 real time: 152063 gc time: 765. The real time is 152 seconds,
meaning this evaluation took just over two and a half minutes. Of this time, the
evaluation was using the CPU for 142 seconds, and the garbage collector ran for
less than one second.

Here are two more examples:

> (time (car (list-append (intsto 1000) (intsto 100))))
cpu time: 531 real time: 531 gc time: 62
1
> (time (car (list-append (intsto 1000) (intsto 100))))
cpu time: 609 real time: 609 gc time: 0
1

The two expressions evaluated are identical, but the reported time varies. Even
on the same computer, the time needed to evaluate the same expression varies.
Many properties unrelated to our expression (such as where things happen to
be stored in memory) impact the actual time needed for any particular evalua-
tion. Hence, it is dangerous to draw conclusions about which procedure is faster
based on a few timings.

Another limitation of this way of measuring cost is it only works if we wait for the
evaluation to complete. If we try an evaluation and it has not finished after an
hour, say, we have no idea if the actual time to finish the evaluation is sixty-one
minutes or a quintillion years. We could wait another minute, but if it still hasn’t
finished we don’t know if the execution time is sixty-two minutes or a quintillion
years. The techniques we develop allow us to predict the time an evaluation
needs without waiting for it to execute.There’s no sense in

being precise when
you don’t even know
what you’re talking

about.
John von Neumann

Finally, measuring the time of a particular application of a procedure does not
provide much insight into how long it will take to apply the procedure to differ-
ent inputs. We would like to understand how the evaluation time scales with the
size of the inputs so we can understand which inputs the procedure can sensibly
be applied to, and can choose the best procedure to use for different situations.
The next section introduces mathematical tools that are helpful for capturing
how cost scales with input size.

Exercise 7.1. Suppose you are defining a procedure that needs to append two
lists, one short list, short and one very long list, long , but the order of elements
in the resulting list does not matter. Is it better to use (list-append short long) or
(list-append long short)? (A good answer will involve both experimental results
and an analytical explanation.)

Chapter 7. Cost 127

Exploration 7.1: Multiplying Like Rabbits

Filius Bonacci was an Italian monk and mathematician in the 12th century. He
published a book, Liber Abbaci, on how to calculate with decimal numbers that
introduced Hindu-Arabic numbers to Europe (replacing Roman numbers) along
with many of the algorithms for doing arithmetic we learn in elementary school.
It also included the problem for which Fibonacci numbers are named:2

A pair of newly-born male and female rabbits are put in a field. Rabbits
mate at the age of one month and after that procreate every month, so the
female rabbit produces a new pair of rabbits at the end of its second month.
Assume rabbits never die and that each female rabbit produces one new
pair (one male, one female) every month from her second month on. How
many pairs will there be in one year?

Filius BonacciWe can define a function that gives the number of pairs of rabbits at the begin-
ning of the nth month as:

Fibonacci(n) =

 1 : n = 1
1 : n = 2

Fibonacci(n− 1) + Fibonacci(n− 2) : n > 1

The third case follows from Bonacci’s assumptions: all the rabbits alive at the
beginning of the previous month are still alive (the Fibonacci(n− 1) term), and
all the rabbits that are at least two months old reproduce (the Fibonacci(n− 2)
term).

The sequence produced is known as the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

After the first two 1s, each number in the sequence is the sum of the previous
two numbers. Fibonacci numbers occur frequently in nature, such as the ar-
rangement of florets in thesunflower (34 spirals in one direction and 55 in the
other) or the number of petals in common plants (typically 1, 2, 3, 5, 8, 13, 21, or
34), hence the rarity of the four-leaf clover.

Translating the definition of the Fibonacci function into a Scheme procedure is
straightforward; we combine the two base cases using the or special form:

(define (fibo n)
(if (or (= n 1) (= n 2)) 1

(+ (fibo (− n 1)) (fibo (− n 2)))))

Applying fibo to small inputs works fine:

> (time (fibo 10))
cpu time: 0 real time: 0 gc time: 0
55
> (time (fibo 30))
cpu time: 2156 real time: 2187 gc time: 0
832040
2Although the sequence is named for Bonacci, it was probably not invented by him. The se-

quence was already known to Indian mathematicians with whom Bonacci studied.

128 7.1. Empirical Measurements

But when we try to determine the number of rabbits in five years by computing
(fibo 60), our interpreter just hangs without producing a value.

The fibo procedure is defined in a way that guarantees it eventually completes
when applied to a non-negative whole number: each recursive call reduces the
input by 1 or 2, so both recursive calls get closer to the base case. Hence, we
always make progress and must eventually reach the base case, unwind the re-
cursive applications, and produce a value. To understand why the evaluation of
(fibo 60) did not finish in our interpreter, we need to consider how much work is
required to evaluate the expression.

To evaluate (fibo 60), the interpreter follows the if expressions to the recursive
case, where it needs to evaluate (+ (fibo 59) (fibo 58)). To evaluate (fibo 59), it
needs to evaluate (fibo 58) again and also evaluate (fibo 57). To evaluate (fibo 58)
(which needs to be done twice), it needs to evaluate (fibo 57) and (fibo 56). So,
there is one evaluation of (fibo 60), one evaluation of (fibo 59), two evaluations
of (fibo 58), and three evaluations of (fibo 57).

The total number of evaluations of the fibo procedure for each input is itself
the Fibonacci sequence! To understand why, consider the evaluation tree for
(fibo 4) shown in Figure 7.1. The only direct number values are the 1 values that
result from evaluations of either (fibo 1) or (fibo 2). Hence, the number of 1 val-
ues must be the value of the final result, which just sums all these numbers.
For (fibo 4), there are 5 leaf applications, and 3 more inner applications, for 8
(= Fibonacci(5)) total recursive applications. The number of evaluations of ap-
plications of fibo needed to evaluate (fibo 60) is the 61st Fibonacci number —
2,504,730,781,961 — over two and a half trillion applications of fibo!

(fibo 5)

(fibo 4) (fibo 3)

(fibo 3) (fibo 2) (fibo 2) (fibo 1)

(fibo 2) (fibo 1) 1 1 1

1 1

Figure 7.1. Evaluation of fibo procedure.

Although our fibo definition is correct, it is ridiculously inefficient and only fin-
ishes for input numbers below about 40. It involves a tremendous amount of
duplicated work: for the (fibo 60) example, there are two evaluations of (fibo 58)
and over a trillion evaluations of (fibo 1) and (fibo 2).

We can avoid this duplicated effort by building up to the answer starting from
the base cases. This is more like the way a human would determine the numbers
in the Fibonacci sequence: we find the next number by adding the previous two

Chapter 7. Cost 129

numbers, and stop once we have reached the number we want.

The fast-fibo procedure computes the nth Fibonacci number, but avoids the du-
plicate effort by computing the results building up from the first two Fibonacci
numbers, instead of working backwards.

(define (fast-fibo n)
(define (fibo-iter a b left)

(if (<= left 0) b
(fibo-iter b (+ a b) (− left 1))))

(fibo-iter 1 1 (− n 2)))

This is a form of what is known as dynamic programming . The definition is still dynamic
programmingrecursive, but unlike the original definition the problem is broken down differ-

ently. Instead of breaking the problem down into a slightly smaller instance of
the original problem, with dynamic programming we build up from the base
case to the desired solution. In the case of Fibonacci, the fast-fibo procedure
builds up from the two base cases until reaching the desired answer. The addi-
tional complexity is we need to keep track of when to stop; we do this using the
left parameter.

The helper procedure, fibo-iter (short for iteration), takes three parameters: a
is the value of the previous-previous Fibonacci number, b is the value of the
previous Fibonacci number, and left is the number of iterations needed be-
fore reaching the target. The initial call to fibo-iter passes in 1 as a (the value
of Fibonacci(1)), and 1 as b (the value of Fibonacci(2)), and (− n 2) as left (we
have n− 2 more iterations to do to reach the target, since the first two Fibonacci
numbers were passed in as a and b we are now working on Fibonacci(2)). Each
recursive call to fibo-iter reduces the value passed in as left by one, and advances
the values of a and b to the next numbers in the Fibonacci sequence.

The fast-fibo procedure produces the same output values as the original fibo
procedure, but requires far less work to do so. The number of applications of
fibo-iter needed to evaluate (fast-fibo 60) is now only 59. The value passed in as
left for the first application of fibo-iter is 58, and each recursive call reduces the
value of left by one until the zero case is reached. This allows us to compute the
expected number of rabbits in 5 years is 1548008755920 (over 1.5 Trillion)3.

7.2 Orders of Growth
As illustrated by the Fibonacci exploration, the same problem can be solved
by procedures that require vastly different resources. The important question
in understanding the resources required to evaluate a procedure application is
how the required resources scale with the size of the input. For small inputs, both
Fibonacci procedures work using with minimal resources. For large inputs, the
first Fibonacci procedure never finishes, but the fast Fibonacci procedure fin-
ishes effectively instantly.

In this section, we introduce three functions computer scientists use to capture

3Perhaps Bonacci’s assumptions are not a good model for actual rabbit procreation. This result
suggests that in about 10 years the mass of all the rabbits produced from the initial pair will exceed
the mass of the Earth, which, although scary, seems unlikely!

130 7.2. Orders of Growth

the important properties of how resources required grow with input size. Each
function takes as input a function, and produces as output a set of functions:

O(f) (“big oh”)
The set of functions that grow no faster than f grows.

Θ(f) (theta)
The set of functions that grow as fast as f grows.

Ω(f) (omega)
The set of functions that grow no slower than f grows.

These functions capture the asymptotic behavior of functions, that is, how they
behave as the inputs get arbitrarily large. To understand how the time required
to evaluate a procedure increases as the inputs to that procedure increase, we
need to know the asymptotic behavior of a function that takes the size of input
to the target procedure as its input and outputs the number of steps to evaluate
the target procedure on that input.Remember that

accumulated
knowledge, like

accumulated
capital, increases at
compound interest:

but it differs from
the accumulation of

capital in this; that
the increase of

knowledge produces
a more rapid rate of
progress, whilst the

accumulation of
capital leads to a

lower rate of
interest. Capital

thus checks its own
accumulation:

knowledge thus
accelerates its own

advance. Each
generation,

therefore, to deserve
comparison with its

predecessor, is
bound to add much

more largely to the
common stock than

that which it
immediately

succeeds.
Charles Babbage, 1851

Figure 7.2 depicts the sets O, Θ, Ω for some function f . Next, we define each
function and provide some examples. Section 7.3 illustrates how to analyze the
time required to evaluate applications of procedures using these notations.

Figure 7.2. Visualization of the sets O(f), Ω(f), and Θ(f).

7.2.1 Big O
The first notation we introduce is O, pronounced “big oh”. The O function takes
as input a function, and produces as output the set of all functions that grow no
faster than the input function. The set O(f) is the set of all functions that grow
as fast as, or slower than, f grows. In Figure 7.2, the O(f) set is represented by
everything inside the outer circle.

To define the meaning of O precisely, we need to consider what it means for a
function to grow. We want to capture how the output of the function increases
as the input to the function increases. First, we consider a few examples; then
we provide a formal definition of O.

Chapter 7. Cost 131

f (n) = n + 12 and g(n) = n− 7
No matter what n value we use, the value of f (n) is greater than the value of
g(n). This doesn’t matter for the growth rates, though. What matters is how
the difference between g(n) and f (n) changes as the input values increase.
No matter what values we choose for n1 and n2, we know g(n1)− f (n1) =
g(n2) − f (n2) = −19. Thus, the growth rates of f and g are identical and
n− 7 is in the set O(n + 12), and n + 12 is in the set O(n− 7).

f (n) = 2n and g(n) = 3n
The difference between g(n) and f (n) is n. This difference increases as the
input value n increases, but it increases by the same amount as n increases.
So, the growth rate as n increases is n

n = 1. The value of 2n is always within
a constant multiple of 3n, so they grow asymptotically at the same rate.
Hence, 2n is in the set O(3n) and 3n is in the set O(2n). x

f (n) = n and g(n) = n2

The difference between g(n) and f (n) is n2− n = n(n− 1). The growth rate

as n increases is n(n−1)
n = n− 1. The value of n− 1 increases as n increases,

so g grows faster than f . This means n2 is not in O(n) since n2 grows faster
than n. The function n is in O(n2) since n grows slower than n2 grows.

f (n) = Fibonacci(n) and g(n) = n
The Fibonacci function grows very rapidly. The value of Fibonacci(n + 2)

is more than double the value of Fibonacci(n) since

Fibonacci(n + 2) = Fibonacci(n + 1) + Fibonacci(n)

and Fibonacci(n+ 1) > Fibonacci(n). The rate of increase is multiplicative,
and must be at least a factor of

√
2 ≈ 1.414 (since increasing by one twice

more than doubles the value).4 This is much faster than the growth rate of
n, which increases by one when we increase n by one. So, n is in the set
O(Fibonacci(n)), but Fibonacci(n) is not in the set O(n).

Some of the example functions are plotted in Figure 7.2.1. The O notation re-
veals the asymptotic behavior of functions. In the first graph, the rightmost
value of n2 is greatest; for higher input values, however, eventually the value of
Fibonacci(n) will be greatest. In the second graph, the values of Fibonacci(n) for
input values up to 20 are so high, that the other functions appear as nearly flat
lines on the graph.

Definition of O. The function g is a member of the set O(f) if and only if there
exist positive constants c and n0 such that

g(n) ≤ c f (n)

for all values n ≥ n0.

We can show g is in O(f) using the definition of O(f) by choosing positive con-
stants for the values of c and n0, and showing that the property g(n) ≤ c f (n)
holds for all values n ≥ n0. To show g is not in O(f), we need to explain how, for
any choices of c and n0, we can find values of n that are greater than n0 such that

4In fact, the rate of increase is a factor of φ = (1 +
√

5)/2 ≈ 1.618, also known as the “golden
ratio”. This is a rather remarkable result, but explaining why is beyond the scope of this book.

132 7.2. Orders of Growth

0

20

40

60

80

100

2 4 6 8 10

n

3n

n2

Fibo(n)

` ` ` ` ` ` ` ` ` `
r r r r r r r r r r

? ? ? ? ? ?
?

?

?

?

0

1000

2000

3000

4000

5000

6000

4 8 12 16 20

n

n2

Fibo(n)

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `r r r r r r r r r r r r r r r r r r r r?????????????
??

?
?

?

?

?

Figure 7.3. Orders of Growth.
Both graphs show the same functions, but scaled for different input ranges.

g(n) ≤ c f (n) does not hold.

Example 7.1: O Examples

We now show the properties claimed earlier are true using the formal defini-
tion.

n− 7 is in O(n + 12)
Choose c = 1 and n0 = 1. Then, we need to show n− 7 ≤ 1(n + 12) for all
values n ≥ 1. This is true, since n− 7 > n + 12 for all values n.

n + 12 is in O(n− 7)
Choose c = 2 and n0 = 26. Then, we need to show n + 12 ≤ 2(n− 7) for all
values n ≥ 26. The equation simplifies to n+ 12 ≤ 2n− 14, which simplifies
to 26 ≤ n. This is trivially true for all values n ≥ 26.

2n is in O(3n)
Choose c = 1 and n0 = 1. Then, 2n ≤ 3n for all values n ≥ 1.

3n is in O(2n)
Choose c = 2 and n0 = 1. Then, 3n ≤ 2(2n) simplifies to n ≤ 4/3n which is
true for all values n ≥ 1.

n is in O(n2)
Choose c = 1 and n0 = 1. Then n ≤ n2 for all values n ≥ 1.

n2 is not in O(n)
We need to show that no matter what values are chosen for c and n0, there
are values of n ≥ n0 such that the inequality n2 ≤ cn does not hold. For any
value of c, we can make n2 > cn by choosing n > c.

n is in O(Fibonacci(n))
Choose c = 1 and n0 = 3. Then n ≤ Fibonacci(n) for all values n ≥ n0.

Fibonacci(n) is not in O(n− 2)
No matter what values are chosen for c and n0, there are values of n ≥ n0
such that Fibonacci(n) > c(n). We know Fibonacci(12) = 144, and, from
the discussion above, that:

Fibonacci(n + 2) > 2 ∗ Fibonacci(n)

This means, for n > 12, we know Fibonacci(n) > n2. So, no matter what
value is chosen for c, we can choose n = c. Then, we need to show

Fibonacci(n) > n(n)

Chapter 7. Cost 133

The right side simplifies to n2. For n > 12, we know Fibonacci(n) > n2.
Hence, we can always choose an n that contradicts the Fibonacci(n) ≤ cn
inequality by choosing an n that is greater than n0, 12, and c.

For all of the examples where g is in O(f), there are many acceptable choices for
c and n0. For the given c values, we can always use a higher n0 value than the
selected value. It only matters that there is some finite, positive constant we can
choose for n0, such that the required inequality, g(n) ≤ c f (n) holds for all values
n ≥ n0. Hence, our proofs work equally well with higher values for n0 than we
selected. Similarly, we could always choose higher c values with the same n0
values. The key is just to pick any appropriate values for c and n0, and show the
inequality holds for all values n ≥ n0.

Proving that a function is not in O(f) is usually tougher. The key to these proofs
is that the value of n that invalidates the inequality is selected after the values of
c and n0 are chosen. One way to think of this is as a game between two adver-
saries. The first player picks c and n0, and the second player picks n. To show the
property that g is not in O(f), we need to show that no matter what values the
first player picks for c and n0, the second player can always find a value n that is
greater than n0 such that g(n) > c f (n).

Exercise 7.2. For each of the g functions below, answer whether or not g is in the
set O(n). Your answer should include a proof. If g is in O(n) you should identify
values of c and n0 that can be selected to make the necessary inequality hold.
If g is not in O(n) you should argue convincingly that no matter what values
are chosen for c and n0 there are values of n ≥ n0 such the inequality in the
definition of O does not hold.

a. g(n) = n + 5

b. g(n) = .01n

c. g(n) = 150n +
√

n

d. g(n) = n1.5

e. g(n) = n!

Exercise 7.3. [?] Given f is some function in O(h), and g is some function not in
O(h), which of the following must always be true:

a. For all positive integers m, f (m) ≤ g(m).

b. For some positive integer m, f (m) < g(m).

c. For some positive integer m0, and all positive integers m > m0,

f (m) < g(m)

7.2.2 Omega
The set Ω(f) (omega) is the set of functions that grow no slower than f grows.
So, a function g is in Ω(f) if g grows as fast as f or faster. Constrast this with
O(f), the set of all functions that grow no faster than f grows. In Figure 7.2,
Ω(f) is the set of all functions outside the darker circle.

The formal definition of Ω(f) is nearly identical to the definition of O(f): the
only difference is the≤ comparison is changed to≥.

134 7.2. Orders of Growth

Definition of Ω(f). The function g is a member of the set Ω(f) if and only if
there exist positive constants c and n0 such that

g(n) ≥ c f (n)

for all values n ≥ n0.

Example 7.2: Ω Examples

We repeat selected examples from the previous section with Ω instead of O. The
strategy is similar: we show g is in Ω(f) using the definition of Ω(f) by choos-
ing positive constants for the values of c and n0, and showing that the property
g(n) ≥ c f (n) holds for all values n ≥ n0. To show g is not in Ω(f), we need to
explain how, for any choices of c and n0, we can find a choice for n ≥ n0 such
that g(n) < c f (n).

n− 7 is in Ω(n + 12)
Choose c = 1

2 and n0 = 26. Then, we need to show n− 7 ≥ 1
2 (n + 12) for

all values n ≥ 26. This is true, since the inequality simplifies n
2 ≥ 13 which

holds for all values n ≥ 26.

2n is in Ω(3n)
Choose c = 1

3 and n0 = 1. Then, 2n ≥ 1
3 (3n) simplifies to n ≥ 0 which holds

for all values n ≥ 1.

n is not in Ω(n2)
Whatever values are chosen for c and n0, we can choose n ≥ n0 such that
n ≥ cn2 does not hold. Choose n > 1

c (note that c must be less than 1 for
the inequality to hold for any positive n, so if c is not less than 1 we can just
choose n ≥ 2). Then, the right side of the inequality cn2 will be greater than
n, and the needed inequality n ≥ cn2 does not hold.

n is not in Ω(Fibonacci(n))
No matter what values are chosen for c and n0, we can choose n ≥ n0 such
that n ≥ Fibonacci(n) does not hold. The value of Fibonacci(n) more than
doubles every time n is increased by 2 (see Section 7.2.1), but the value
of c(n) only increases by 2c. Hence, if we keep increasing n, eventually
Fibonacci(n + 1) > c(n− 2) for any choice of c.

Exercise 7.4. Repeat Exercise 7.2 using Ω instead of O.

Exercise 7.5. For each part, identify a function g that satisfies the stated prop-
erty.

a. g is in O(n2) but not in Ω(n2).

b. g is not in O(n2) but is in Ω(n2).

c. g is in both O(n2) and Ω(n2).

7.2.3 Theta
The function Θ(f) denotes the set of functions that grow at the same rate as f .
It is the intersection of the sets O(f) and Ω(f). Hence, a function g is in Θ(f) if

Chapter 7. Cost 135

and only if g is in O(f) and g is in Ω(f). In Figure 7.2, Θ(f) is the ring between
the outer and inner circles.

An alternate definition combines the inequalities for O and Ω:

Definition of Θ(f). The function g is a member of the set Θ(f) if any only if
there exist positive constants c1, c2, and n0 such that

c1 f (n) ≥ g(n) ≥ c2 f (n)

is true for all values n ≥ n0.

If g(n) is in Θ(f (n)), then the sets Θ(f (n)) and Θ(g(n)) are identical. If g(n) ∈
Θ(f (n)) then g and f grow at the same rate,

Example 7.3: Θ Examples

Determining membership in Θ(f) is simple once we know membership in O(f)
and Ω(f).

n− 7 is in Θ(n + 12)
Since n− 7 is in O(n+ 12) and n− 7 is in Ω(n+ 12)we know n− 7 is in Θ(n+
12). Intuitively, n− 7 increases at the same rate as n + 12, since adding one
to n adds one to both function outputs. We can also show this using the
definition of Θ(f): choose c1 = 1, c2 = 1

2 , and n0 = 38.

2n is in Θ(3n)
2n is in O(3n) and in Ω(3n). Choose c1 = 1, c2 = 1

3 , and n0 = 1.

n is not in Θ(n2)
n is not in Ω(n2). Intuitively, n grows slower than n2 since increasing n by
one always increases the value of the first function, n, by one, but increases
the value of n2 by 2n + 1, a value that increases as n increases.

n2 is not in Θ(n): n2 is not in O(n).

n− 2 is not in Θ(Fibonacci(n + 1)): n− 2 is not in Ω(n).

Fibonacci(n) is not in Θ(n): Fibonacci(n + 1) is not in O(n− 2).

Properties of O, Ω, and Θ. Because O, Ω, and Θ are concerned with the asymp-
totic properties of functions, that is, how they grow as inputs approach infinity,
many functions that are different when the actual output values matter gener-
ate identical sets with the O, Ω, and Θ functions. For example, we saw n− 7 is in
Θ(n + 12) and n + 12 is in Θ(n− 7). In fact, every function that is in Θ(n− 7) is
also in Θ(n + 12).

More generally, if we could prove g is in Θ(an + k) where a is a positive constant
and k is any constant, then g is also in Θ(n). Thus, the set Θ(an+ k) is equivalent
to the set Θ(n).

We prove Θ(an + k) ≡ Θ(n) using the definition of Θ. To prove the sets are
equivalent, we need to show inclusion in both directions.

Θ(n) ⊆ Θ(an + k): For any function g, if g is in Θ(n) then g is in Θ(an + k).
Since g is in Θ(n) there exist positive constants c1, c2, and n0 such that c1n ≥
g(n) ≥ c2n. To show g is also in Θ(an + k) we find d1, d2, and m0 such that
d1(an + k) ≥ g(n) ≥ d2(an + k) for all n ≥ m0. Simplifying the inequalities,

136 7.3. Analyzing Procedures

we need (ad1)n + kd1 ≥ g(n) ≥ (ad2)n + kd2. Ignoring the constants for
now, we can pick d1 = c1

a and d2 = c2
a . Since g is in Θ(n), we know

(a
c1

a
)n ≥ g(n) ≥ (a

c2

a
)n

is satisfied. As for the constants, as n increases they become insignificant.
Adding one to d1 and d2 adds an to the first term and k to the second term.
Hence, as n grows, an becomes greater than k.

Θ(an + k) ⊆ Θ(k): For any function g, if g is in Θ(an + k) then g is in Θ(n).
Since g is in Θ(an + k) there exist positive constants c1, c2, and n0 such
that c1(an + k) ≥ g(n) ≥ c2(an + k). Simplifying the inequalities, we have
(ac1)n + kc1 ≥ g(n) ≥ (ac2)n + kc2 or, for some different positive constants
b1 = ac1 and b2 = ac2 and constants k1 = kc1 and k2 = kc2, b1n + k1 ≥
g(n) ≥ b2n + k2. To show g is also in Θ(n), we find d1, d2, and m0 such that
d1n ≥ g(n) ≥ d2n for all n ≥ m0. If it were not for the constants, we al-
ready have this with d1 = b1 and d2 = b2. As before, the constants become
inconsequential as n increases.

This property also holds for the O and Ω operators since our proof for Θ also
proved the property for the O and Ω inequalities.

This result can be generalized to any polynomial. The set Θ(a0 + a1n + a2n2 +
...+ aknk) is equivalent to Θ(nk). Because we are concerned with the asymptotic
growth, only the highest power term of the polynomial matters once n gets big
enough.

Exercise 7.6. Repeat Exercise 7.2 using Θ instead of O.

Exercise 7.7. Show that Θ(n2 − n) is equivalent to Θ(n2).

Exercise 7.8. [?] Is Θ(n2) equivalent to Θ(n2.1)? Either prove they are identical,
or prove they are different.

Exercise 7.9. [?] Is Θ(2n) equivalent to Θ(3n)? Either prove they are identical, or
prove they are different.

7.3 Analyzing Procedures
By considering the asymptotic growth of functions, rather than their actual out-
puts, the O, Ω, and Θ operators allow us to hide constants and factors that
change depending on the speed of our processor, how data is arranged in mem-
ory, and the specifics of how our interpreter is implemented. Instead, we can
consider the essential properties of how the running time of the procedures in-
creases with the size of the input.

This section explains how to measure input sizes and running times. To under-
stand the growth rate of a procedure’s running time, we need a function that
maps the size of the inputs to the procedure to the amount of time it takes to
evaluate the application. First we consider how to measure the input size; then,
we consider how to measure the running time. In Section 7.3.3 we consider
which input of a given size should be used to reason about the cost of applying
a procedure. Section 7.4 provides examples of procedures with different growth
rates. The growth rate of a procedure’s running time gives us an understanding
of how the running time increases as the size of the input increases.

Chapter 7. Cost 137

7.3.1 Input Size
Procedure inputs may be many different types: Numbers, Lists of Numbers,
Lists of Lists, Procedures, etc. Our goal is to characterize the input size with a
single number that does not depend on the types of the input.

We use the Turing machine to model a computer, so the way to measure the size
of the input is the number of characters needed to write the input on the tape.
The characters can be from any fixed-size alphabet, such as the ten decimal dig-
its, or the letters of the alphabet. The number of different symbols in the tape
alphabet does not matter for our analysis since we are concerned with orders of
growth not absolute values. Within the O, Ω, and Θ operators, a constant fac-
tor does not matter (e.g., Θ(n) ≡ Θ(17n + 523)). This means is doesn’t matter
whether we use an alphabet with two symbols or an alphabet with 256 symbols.
With two symbols the input may be 8 times as long as it is with a 256-symbol al-
phabet, but the constant factor does not matter inside the asymptotic operator.

Thus, we measure the size of the input as the number of symbols required to
write the number on a Turing Machine input tape. To figure out the input size
of a given type, we need to think about how many symbols it would require to
write down inputs of that type.

Booleans. There are only two Boolean values: true and false. Hence, the length
of a Boolean input is fixed.

Numbers. Using the decimal number system (that is, 10 tape symbols), we can
write a number of magnitude n using log10 n digits. Using the binary number
system (that is, 2 tape symbols), we can write it using log2 n bits. Within the
asymptotic operators, the base of the logarithm does not matter (as long as it is
a constant) since it changes the result by a constant factor. We can see this from
the argument above — changing the number of symbols in the input alphabet
changes the input length by a constant factor which has no impact within the
asymptotic operators.

Lists. If the input is a List, the size of the input is related to the number of
elements in the list. If each element is a constant size (for example, a list of
numbers where each number is between 0 and 100), the size of the input list is
some constant multiple of the number of elements in the list. Hence, the size of
an input that is a list of n elements is cn for some constant c. Since Θ(cn) = Θ(n),
the size of a List input is Θ(n) where n is the number of elements in the List. If
List elements can vary in size, then we need to account for that in the input size.
For example, suppose the input is a List of Lists, where there are n elements in
each inner List, and there are n List elements in the main List. Then, there are n2

total elements and the input size is in Θ(n2).

7.3.2 Running Time
We want a measure of the running time of a procedure that satisfies two proper-
ties: (1) it should be robust to ephemeral properties of a particular execution or
computer, and (2) it should provide insights into how long it takes evaluate the
procedure on a wide range of inputs.

To estimate the running time of an evaluation, we use the number of steps re-
quired to perform the evaluation. The actual number of steps depends on the
details of how much work can be done on each step. For any particular proces-

138 7.3. Analyzing Procedures

sor, both the time it takes to perform a step and the amount of work that can be
done in one step varies. When we analyze procedures, however, we usually don’t
want to deal with these details. Instead, what we care about is how the running
time changes as the input size increases. This means we can count anything we
want as a “step” as long as each step is the approximately same size and the time
a step requires does not depend on the size of the input.

The clearest and simplest definition of a step is to use one Turing Machine step.
We have a precise definition of exactly what a Turing Machine can do in one step:
it can read the symbol in the current square, write a symbol into that square,
transition its internal state number, and move one square to the left or right.
Counting Turing Machine steps is very precise, but difficult because we do not
usually start with a Turing Machine description of a procedure and creating one
is tedious.Time makes more

converts than
reason.

Thomas Paine
Instead, we usually reason directly from a Scheme procedure (or any precise de-
scription of a procedure) using larger steps. As long as we can claim that what-
ever we consider a step could be simulated using a constant number of steps
on a Turing Machine, our larger steps will produce the same answer within the
asymptotic operators. One possibility is to count the number of times an evalua-
tion rule is used in an evaluation of an application of the procedure. The amount
of work in each evaluation rule may vary slightly (for example, the evaluation
rule for an if expression seems more complex than the rule for a primitive) but
does not depend on the input size.

Hence, it is reasonable to assume all the evaluation rules to take constant time.
This does not include any additional evaluation rules that are needed to apply
one rule. For example, the evaluation rule for application expressions includes
evaluating every subexpression. Evaluating an application constitutes one work
unit for the application rule itself, plus all the work required to evaluate the
subexpressions. In cases where the bigger steps are unclear, we can always re-
turn to our precise definition of a step as one step of a Turing Machine.

7.3.3 Worst Case Input
A procedure may have different running times for inputs of the same size.

For example, consider this procedure that takes a List as input and outputs the
first positive number in the list:

(define (list-first-pos p)
(if (null? p) (error "No positive element found")

(if (> (car p) 0) (car p) (list-first-pos (cdr p)))))

If the first element in the input list is positive, evaluating the application of list-
first-pos requires very little work. It is not necessary to consider any other ele-
ments in the list if the first element is positive. On the other hand, if none of the
elements are positive, the procedure needs to test each element in the list until
it reaches the end of the list (where the base case reports an error).

In our analyses we usually consider the worst case input. For a given size, theworst case

worst case input is the input for which evaluating the procedure takes the most
work. By focusing on the worst case input, we know the maximum running time
for the procedure. Without knowing something about the possible inputs to
the procedure, it is safest to be pessimistic about the input and not assume any

Chapter 7. Cost 139

properties that are not known (such as that the first number in the list is positive
for the first-pos example).

In some cases, we also consider the average case input. Since most procedures
can take infinitely many inputs, this requires understanding the distribution of
possible inputs to determine an “average” input. This is often necessary when
we are analyzing the running time of a procedure that uses another helper pro-
cedure. If we use the worst-case running time for the helper procedure, we will
grossly overestimate the running time of the main procedure. Instead, since
we know how the main procedure uses the helper procedure, we can more pre-
cisely estimate the actual running time by considering the actual inputs. We see
an example of this in the analysis of how the + procedure is used by list-length
in Section 7.4.2.

7.4 Growth Rates
Since our goal is to understand how the running time of an application of a pro-
cedure is related to the size of the input, we want to devise a function that takes
as input a number that represents the size of the input and outputs the maxi-
mum number of steps required to complete the evaluation on an input of that
size. Symbolically, we can think of this function as:

Max-StepsProc : Number → Number

where Proc is the name of the procedure we are analyzing. Because the output
represents the maximum number of steps required, we need to consider the
worst-case input of the given size.

Because of all the issues with counting steps exactly, and the uncertainty about
how much work can be done in one step on a particular machine, we cannot
usually determine the exact function for Max-StepsProc . Instead, we charac-
terize the running time of a procedure with a set of functions denoted by an
asymptotic operator. Inside the O, Ω, and Θ operators, the actual time needed
for each step does not matter since the constant factors are hidden by the oper-
ator; what matters is how the number of steps required grows as the size of the
input grows.

Hence, we will characterize the running time of a procedure using a set of func-
tions produced by one of the asymptotic operators. The Θ operator provides the
most information. Since Θ(f) is the intersection of O(f) (no faster than) and
Ω(f) (no slower than), knowing that the running time of a procedure is in Θ(f)
for some function f provides much more information than just knowing it is in
O(f) or just knowing that it is in Ω(f). Hence, our goal is to characterize the
running time of a procedure using the set of functions defined by Θ(f) of some
function f .

The rest of this section provides examples of procedures with different growth
rates, from slowest (no growth) through increasingly rapid growth rates. The
growth classes described are important classes that are commonly encountered
when analyzing procedures, but these are only examples of growth classes. Be-
tween each pair of classes described here, there are an unlimited number of dif-
ferent growth classes.

140 7.4. Growth Rates

7.4.1 No Growth: Constant Time
If the running time of a procedure does not increase when the size of the input
increases, the procedure must be able to produce its output by looking at only a
constant number of symbols in the input.

Procedures whose running time does not increase with the size of the input are
known as constant time procedures. Their running time is in O(1) — it does notconstant time

grow at all. By convention, we use O(1) instead of Θ(1) to describe constant
time. Since there is no way to grow slower than no growth, O(1) and Θ(1) are
equivalent.

We cannot do much in constant time, since we cannot even examine the whole
input. A constant time procedure must be able to produce its output by exam-
ining only a fixed-size part of the input. Recall that the input size measures the
number of squares needed to represent the input. A constant time procedure
can look at no more than C squares on the tape where C is some constant. If the
input is larger than C, a constant time procedure can not even read parts of the
input.

An example of a constant time procedure is the built-in procedure car . When
car is applied to a non-empty list, it evaluates to the first element of that list.
No matter how long the input list is, all the car procedure needs to do is extract
the first component of the list. So, the running time of car is in O(1).5 Other
built-in procedures that involve lists and pairs that have running times in O(1)
include cons, cdr , null?, and pair?. None of these procedures need to examine
more than the first pair of the list.

7.4.2 Linear Growth
When the running time of a procedure increases by a constant amount when the
size of the input grows by one, the running time of the procedure grows linearlylinearly

with the input size. If the input size is n, the running time is in Θ(n). If a proce-
dure has running time in Θ(n), doubling the size of the input will approximately
double the execution time.

An example of a procedure that has linear growth is the elementary school ad-
dition algorithm from Section 6.2.3. To add two d-digit numbers, we need to
perform a constant amount of work for each digit. The number of steps required
grows linearly with the size of the numbers (recall from Section 7.3.1 that the size
of a number is the number of input symbols needed to represent the number).

Many procedures that take a List as input have linear time growth. A procedure
that does something that takes constant time with every element in the input
List, has running time that grows linearly with the size of the input since adding
one element to the list increases the number of steps by a constant amount.
Next, we analyze three list procedures, all of which have running times that scale

5Since we are speculating based on what car does, not examining how car a particular Scheme
interpreter actually implements it, we cannot say definitively that its running time is in O(1). It
would be rather shocking, however, for an implementation to implement car in a way such that
its running time that is not in O(1). The implementation of scar in Section 5.2.1 is constant time:
regardless of the input size, evaluating an application of it involves evaluating a single application
expression, and then evaluating an if expression.

Chapter 7. Cost 141

linearly with the size of their input.

Example 7.4: Append

Consider the list-append procedure (from Example 5.6):

(define (list-append p q)
(if (null? p) q (cons (car p) (list-append (cdr p) q))))

Since list-append takes two inputs, we need to be careful about how we refer
to the input size. We use np to represent the number of elements in the first
input, and nq to represent the number of elements in the second input. So, our
goal is to define a function Max-Stepslist-append (np, nq) that captures how the

maximum number of steps required to evaluate an application of list-append
scales with the size of its input.

To analyze the running time of list-append, we examine its body which is an if
expression. The predicate expression applies the null? procedure with is con-
stant time since the effort required to determine if a list is null does not depend
on the length of the list. When the predicate expression evaluates to true, the
alternate expression is just q, which can also be evaluated in constant time.

Next, we consider the alternate expression. It includes a recursive application
of list-append. Hence, the running time of the alternate expression is the time
required to evaluate the recursive application plus the time required to evaluate
everything else in the expression. The other expressions to evaluate are applica-
tions of cons, car , and cdr , all of which is are constant time procedures.

So, we can defined the total running time recursively as:

Max-Stepslist-append (np, nq) = C + Max-Stepslist-append (np − 1, nq)

where C is some constant that reflects the time for all the operations besides the
recursive call. Note that the value of nq does not matter, so we simplify this to:

Max-Stepslist-append (np) = C + Max-Stepslist-append (np − 1).

This does not yet provide a useful characterization of the running time of list-
append though, since it is a circular definition. To make it a recursive definition,
we need a base case. The base case for the running time definition is the same
as the base case for the procedure: when the input is null. For the base case, the
running time is constant:

Max-Stepslist-append (0) = C0

where C0 is some constant.

To better characterize the running time of list-append, we want a closed form
solution. For a given input n, Max-Steps(n) is C+C+C+C+ . . .+C+C0 where
there are n − 1 of the C terms in the sum. This simplifies to (n − 1)C + C0 =
nC − C + C0 = nC + C2. We do not know what the values of C and C2 are, but
within the asymptotic notations the constant values do not matter. The impor-
tant property is that the running time scales linearly with the value of its input.
Thus, the running time of list-append is in Θ(np) where np is the number of
elements in the first input.

142 7.4. Growth Rates

Usually, we do not need to reason at quite this low a level. Instead, to analyze the
running time of a recursive procedure it is enough to determine the amount of
work involved in each recursive call (excluding the recursive application itself)
and multiply this by the number of recursive calls. For this example, there are np
recursive calls since each call reduces the length of the p input by one until the
base case is reached. Each call involves only constant-time procedures (other
than the recursive application), so the amount of work involved in each call is
constant. Hence, the running time is in Θ(np). Equivalently, the running time
for the list-append procedure scales linearly with the length of the first input list.

Example 7.5: Length

Consider the list-length procedure from Example 5.1:

(define (list-length p) (if (null? p) 0 (+ 1 (list-length (cdr p)))))

This procedure makes one recursive application of list-length for each element
in the input p. If the input has n elements, there will be n + 1 total applications
of list-length to evaluate (one for each element, and one for the null). So, the
total work is in Θ(n ·work for each recursive application).

To determine the running time, we need to determine how much work is in-
volved in each application. Evaluating an application of list-length involves eval-
uating its body, which is an if expression. To evaluate the if expression, the pred-
icate expression, (null? p), must be evaluated first. This requires constant time
since the null? procedure has constant running time (see Section 7.4.1). The
consequent expression is the primitive expression, 0, which can be evaluated in
constant time. The alternate expression, (+ 1 (list-length (cdr p))), includes the
recursive call. There are n + 1 total applications of list-length to evaluate, the
total running time is n + 1 times the work required for each application (other
than the recursive application itself).

The remaining work is evaluating (cdr p) and evaluating the + application. The
cdr procedure is constant time. Analyzing the running time of the + procedure
application is more complicated.

Cost of Addition. Since + is a built-in procedure, we need to think about how
it might be implemented. Following the elementary school addition algorithm
(from Section 6.2.3), we know we can add any two numbers by walking down
the digits. The work required for each digit is constant; we just need to compute
the corresponding result and carry bits using a simple formula or lookup table.
The number of digits to add is the maximum number of digits in the two input
numbers. Thus, if there are b digits to add, the total work is in Θ(b). In the worst
case, we need to look at all the digits in both numbers. In general, we cannot
do asymptotically better than this, since adding two arbitrary numbers might
require looking at all the digits in both numbers.

But, in the list-length procedure the + is used in a very limited way: one of the
inputs is always 1. We might be able to add 1 to a number without looking at all
the digits in the number. Recall the addition algorithm: we start at the rightmost
(least significant) digit, add that digit, and continue with the carry. If one of
the input numbers is 1, then once the carry is zero we know now of the more
significant digits will need to change. In the worst case, adding one requires
changing every digit in the other input. For example, (+ 99999 1) is 100000. In

Chapter 7. Cost 143

the best case (when the last digit is below 9), adding one requires only examining
and changing one digit.

Figuring out the average case is more difficult, but necessary to get a good esti-
mate of the running time of list-length. We assume the numbers are represented
in binary, so instead of decimal digits we are counting bits (this is both simpler,
and closer to how numbers are actually represented in the computer). Approx-
imately half the time, the least significant bit is a 0, so we only need to examine
one bit. When the last bit is not a 0, we need to examine the second least signifi-
cant bit (the second bit from the right): if it is a 0 we are done; if it is a 1, we need
to continue.

We always need to examine one bit, the least significant bit. Half the time we
also need to examine the second least significant bit. Of those times, half the
time we need to continue and examine the next least significant bit. This con-
tinues through the whole number. Thus, the expected number of bits we need
to examine is,

1 +
1
2

(
1 +

1
2

(
1 +

1
2

(
1 +

1
2
(1 + . . .)

)))
where the number of terms is the number of bits in the input number, b. Simpli-
fying the equation, we get:

1 +
1
2
+

1
4
+

1
8
+

1
16

+ . . . +
1
2b

No matter how large b gets, this value is always less than 2. So, on average, the
number of bits to examine to add 1 is constant: it does not depend on the length
of the input number. Although adding two arbitrary values cannot be done in
constant time, adding 1 to an arbitrary value can, on average, be done in con-
stant time.

This result generalizes to addition where one of the inputs is any constant. Adding
any constant C to a number n is equivalent to adding one C times. Since adding
one is a constant time procedure, adding one C times can also be done in con-
stant time for any constant C.

Excluding the recursive application, the list-length application involves appli-
cations of two constant time procedures: cdr and adding one using +. Hence,
the total time needed to evaluate one application of list-length, excluding the
recursive application, is constant.

There are n + 1 total applications of list-length to evaluate total, so the total run-
ning time is c(n + 1) where c is the amount of time needed for each application.
The set Θ(c(n+ 1)) is identical to the set Θ(n), so the running time for the length
procedure is in Θ(n) where n is the length of the input list.

144 7.4. Growth Rates

Example 7.6: Accessing List Elements

Consider the list-get-element procedure from Example 5.3:

(define (list-get-element p n)
(if (= n 1)

(car p)
(list-get-element (cdr p) (− n 1))))

The procedure takes two inputs, a List and a Number selecting the element of
the list to get. Since there are two inputs, we need to think carefully about the
input size. We can use variables to represent the size of each input, for example
sp and sn for the size of p and n respectively. In this case, however, only the size
of the first input really matters.

The procedure body is an if expression. The predicate uses the built-in = pro-
cedure to compare n to 1. The worst case running time of the = procedure is
linear in the size of the input: it potentially needs to look at all bits in the input
numbers to determine if they are equal. Similarly to +, however, if one of the
inputs is a constant, the comparison can be done in constant time. To compare
a number of any size to 1, it is enough to look at a few bits. If the least significant
bit of the input number is not a 1, we know the result is false. If it is a 1, we need
to examine a few other bits of the input number to determine if its value is dif-
ferent from 1 (the exact number of bits depends on the details of how numbers
are represented). So, the = comparison can be done in constant time.

If the predicate is true, the base case applies the car procedure, which has con-
stant running time. The alternate expression involves the recursive calls, as well
as evaluating (cdr p), which requires constant time, and (− n 1). The − proce-
dure is similar to +: for arbitrary inputs, its worst case running time is linear
in the input size, but when one of the inputs is a constant the running time is
constant. This follows from a similar argument to the one we used for the +
procedure (Exercise 7.13 asks for a more detailed analysis of the running time of
subtraction). So, the work required for each recursive call is constant.

The number of recursive calls is determined by the value of n and the number
of elements in the list p. In the best case, when n is 1, there are no recursive calls
and the running time is constant since the procedure only needs to examine
the first element. Each recursive call reduces the value passed in as n by 1, so
the number of recursive calls scales linearly with n (the actual number is n− 1
since the base case is when n equals 1). But, there is a limit on the value of n for
which this is true. If the value passed in as n exceeds the number of elements in
p, the procedure will produce an error when it attempts to evaluate (cdr p) for
the empty list. This happens after sp recursive calls, where sp is the number of
elements in p. Hence, the running time of list-get-element does not grow with
the length of the input passed as n; after the value of n exceeds the number of
elements in p it does not matter how much bigger it gets, the running time does
not continue to increase.

Thus, the worst case running time of list-get-element grows linearly with the
length of the input list. Equivalently, the running time of list-get-element is in
Θ(sp) where sp is the number of elements in the input list.

Chapter 7. Cost 145

Exercise 7.10. Explain why the list-map procedure from Section 5.4.1 has run-
ning time that is linear in the size of its List input. Assume the procedure input
has constant running time.

Exercise 7.11. Consider the list-sum procedure (from Example 5.2):

(define (list-sum p) (if (null? p) 0 (+ (car p) (list-sum (cdr p)))))

What assumptions are needed about the elements in the list for the running time
to be linear in the number if elements in the input list?

Exercise 7.12. For the decimal six-digit odometer (shown in the picture on
page 143), we measure the amount of work to add one as the total number of
wheel digit turns required. For example, going from 000000 to 000001 requires
one work unit, but going from 000099 to 000100 requires three work units.

a. What are the worst case inputs?

b. What are the best case inputs?

c. [?] On average, how many work units are required for each mile? Assume
over the lifetime of the odometer, the car travels 1,000,000 miles.

d. Lever voting machines were used by the majority of American voters in the
1960s, although they are not widely used today. Most level machines used a
three-digit odometer to tally votes. Explain why candidates ended up with 99
votes on a machine far more often than 98 or 100 on these machines.

Exercise 7.13. [?] The list-get-element argued by comparison to +, that the −
procedure has constant running time when one of the inputs is a constant. De-
velop a more convincing argument why this is true by analyzing the worst case
and average case inputs for−.

Exercise 7.14. [?] Our analysis of the work required to add one to a number ar-
gued that it could be done in constant time. Test experimentally if the DrRacket
+ procedure actually satisfies this property. Note that one + application is too
quick to measure well using the time procedure, so you will need to design a
procedure that applies + many times without doing much other work.

7.4.3 Quadratic Growth
If the running time of a procedure scales as the square of the size of the input,
the procedure’s running time grows quadratically. Doubling the size of the in- quadratically

put approximately quadruples the running time. The running time is in Θ(n2)
where n is the size of the input.

A procedure that takes a list as input has running time that grows quadratically
if it goes through all elements in the list once for every element in the list. For
example, we can compare every element in a list of length n with every other
element using n(n − 1) comparisons. This simplifies to n2 − n, but Θ(n2 − n)
is equivalent to Θ(n2) since as n increases only the highest power term matters
(see Exercise 7.7).

146 7.4. Growth Rates

Example 7.7: Reverse

Consider the list-reverse procedure defined in Section 5.4.2:

(define (list-reverse p)
(if (null? p) null (list-append (list-reverse (cdr p)) (list (car p)))))

To determine the running time of list-reverse, we need to know how many recur-
sive calls there are and how much work is involved in each recursive call. Each
recursive application passes in (cdr p) as the input, so reduces the length of the
input list by one. Hence, applying list-reverse to a input list with n elements in-
volves n recursive calls.

The work for each recursive application, excluding the recursive call itself, is ap-
plying list-append. The first input to list-append is the output of the recursive
call. As we argued in Example 7.4, the running time of list-append is in Θ(np)
where np is the number of elements in its first input. So, to determine the run-
ning time we need to know the length of the first input list to list-append. For the
first call, (cdr p) is the parameter, with length n− 1; for the second call, there will
be n− 2 elements; and so forth, until the final call where (cdr p) has 0 elements.
The total number of elements in all of these calls is:

(n− 1) + (n− 2) + . . . + 1 + 0.

The average number of elements in each call is approximately n
2 . Within the

asymptotic operators the constant factor of 1
2 does not matter, so the average

running time for each recursive application is in Θ(n).

There are n recursive applications, so the total running time of list-reverse is n
times the average running time of each recursive application:

n ·Θ(n) = Θ(n2).

Thus, the running time is quadratic in the size of the input list.

Example 7.8: Multiplication

Consider the problem of multiplying two numbers. The elementary school long
multiplication algorithm works by multiplying each digit in b by each digit in a,
aligning the intermediate results in the right places, and summing the results:

an−1 · · · a1 a0
× bn−1 · · · b1 b0

an−1b0 · · · a1b0 a0b0
an−1b1 · · · a1b1 a0b1

+ an−1bn−1 · · · a1bn−1 a0bn−1

r2n−1 r2n−2 · · · · · · r3 r2 r1 r0

If both input numbers have n digits, there are n2 digit multiplications, each of
which can be done in constant time. The intermediate results will be n rows,
each containing n digits. So, the total number of digits to add is n2: 1 digit in the
ones place, 2 digits in the tens place, . . ., n digits in the 10n−1s place, . . ., 2 digits
in the 102n−3s place, and 1 digit in the 102n−2s place. Each digit addition requires

Chapter 7. Cost 147

constant work, so the total work for all the digit additions is in Θ(n2). Adding
the work for both the digit multiplications and the digit additions, the total run-
ning time for the elementary school multiplication algorithm is quadratic in the
number of input digits, Θ(n2) where n is the number if digits in the inputs.

This is not the fastest known algorithm for multiplying two numbers, although it
was the best algorithm known until 1960. In 1960, Anatolii Karatsuba discovers
a multiplication algorithm with running time in Θ(nlog2 3). Since log2 3 < 1.585
this is an improvement over the Θ(n2) elementary school algorithm. In 2007,
Martin Fürer discovered an even faster algorithm for multiplication.6 It is not
yet known if this is the fastest possible multiplication algorithm, or if faster ones
exist.

Exercise 7.15. [?] Analyze the running time of the elementary school long divi-
sion algorithm.

Exercise 7.16. [?] Define a Scheme procedure that multiplies two multi-digit
numbers (without using the built-in ∗ procedure except to multiply single-digit
numbers). Strive for your procedure to have running time in Θ(n) where n is the
total number of digits in the input numbers.

Exercise 7.17. [? ? ??] Devise an asymptotically faster general multiplication
algorithm than Fürer’s, or prove that no faster algorithm exists.

7.4.4 Exponential Growth
If the running time of a procedure scales as a power of the size of the input,
the procedure’s running time grows exponentially. When the size of the input
increases by one, the running time is multiplied by some constant factor. The
growth rate of a function whose output is multiplied by w when the input size,
n, increases by one is wn. Exponential growth is very fast—it is not feasible to
evaluate applications of an exponential time procedure on large inputs.

For a surprisingly large number of interesting problems, the best known algo-
rithm has exponential running time. Examples of problems like this include
finding the best route between two locations on a map (the problem mentioned
at the beginning of Chapter 4), the pegboard puzzle (Exploration 5.2, solving
generalized versions of most other games such as Suduko and Minesweeper,
and finding the factors of a number. Whether or not it is possible to design
faster algorithms that solve these problems is the most important open prob-
lem in computer science.

Example 7.9: Factoring

A simple way to find a factor of a given input number is to exhaustively try all
possible numbers below the input number to find the first one that divides the
number evenly. The find-factor procedure takes one number as input and out-
puts the lowest factor of that number (other than 1):

6Martin Fürer, Faster Integer Multiplication, ACM Symposium on Theory of Computing, 2007.

148 7.4. Growth Rates

(define (find-factor n)
(define (find-factor-helper v)

(if (= (modulo n v) 0) v (find-factor-helper (+ 1 v))))
(find-factor-helper 2))

The find-factor-helper procedure takes two inputs, the number to factor and the
current guess. Since all numbers are divisible by themselves, the modulo test
will eventually be true for any positive input number, so the maximum number
of recursive calls is n, the magnitude of the input to find-factor . The magnitude
of n is exponential in its size, so the number of recursive calls is in Θ(2b) where
b is the number of bits in the input. This means even if the amount of work re-
quired for each recursive call were constant, the running time of the find-factor
procedure is still exponential in the size of its input.

The actual work for each recursive call is not constant, though, since it involves
an application of modulo. The modulo built-in procedure takes two inputs and
outputs the remainder when the first input is divided by the second input. Hence,
it output is 0 if n is divisible by v. Computing a remainder, in the worst case, at
least involves examining every bit in the input number, so scales at least linearly
in the size of its input7. This means the running time of find-factor is in Ω(2b):
it grows at least as fast as 2b.

There are lots of ways we could produce a faster procedure for finding factors:
stopping once the square root of the input number is reached since we know
there is no need to check the rest of the numbers, skipping even numbers after 2
since if a number is divisible by any even number it is also divisible by 2, or using
advanced sieve methods. This techniques can improve the running time by con-
stant factors, but there is no known factoring algorithm that runs in faster than
exponential time. The security of the widely used RSA encryption algorithm de-
pends on factoring being hard; if someone finds a faster than exponential time
factoring algorithm it would put the codes used to secure Internet commerce at
risk.8

Example 7.10: Power Set

The power set of a set S is the set of all subsets of S. For example, the power setpower set

of {1, 2, 3} is {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The number of elements in the power set of S is 2|S| (where |S| is the number of
elements in the set S).

Here is a procedure that takes a list as input, and produces as output the power
set of the elements of the list:

(define (list-powerset s)
(if (null? s) (list null)

(list-append (list-map (lambda (t) (cons (car s) t))
(list-powerset (cdr s)))

(list-powerset (cdr s)))))

The list-powerset procedure produces a List of Lists. Hence, for the base case,

7In fact, it computing the remainder requires performing division, which is quadratic in the size
of the input.

8The movie Sneakers is a fictional account of what would happen if someone finds a faster than
exponential time factoring algorithm.

Chapter 7. Cost 149

instead of just producing null, it produces a list containing a single element,
null. In the recursive case, we can produce the power set by appending the list
of all the subsets that include the first element, with the list of all the subsets that
do not include the first element. For example, the powerset of {1, 2, 3} is found
by finding the powerset of {2, 3}, which is {{}, {2}, {3}, {2, 3}}, and taking the
union of that set with the set of all elements in that set unioned with {1}.

An application of list-powerset involves applying list-append, and two recursive
applications of (list-powerset (cdr s)). Increasing the size of the input list by one,
doubles the total number of applications of list-powerset since we need to eval-
uate (list-powerset (cdr s)) twice. The number of applications of list-powerset is
2n where n is the length of the input list.9

The body of list-powerset is an if expression. The predicate applies the constant-
time procedure, null?. The consequent expression, (list null) is also constant
time. The alternate expression is an application of list-append. From Exam-
ple 7.4, we know the running time of list-append is Θ(np) where np is the num-
ber of elements in its first input. The first input is the result of applying list-map
to a procedure and the List produced by (list-powerset (cdr s)). The length of
the list output by list-map is the same as the length of its input, so we need to
determine the length of (list-powerset (cdr s)).

We use ns to represent the number of elements in s. The length of the input list
to map is the number of elements in the power set of a size ns − 1 set: 2ns−1. But,
for each application, the value of ns is different. Since we are trying to determine
the total running time, we can do this by thinking about the total length of all the
input lists to list-map over all of the list-powerset . In the input is a list of length
n, the total list length is 2n−1 + 2n−2 + ... + 21 + 20, which is equal to 2n − 1. So,
the running time for all the list-map applications is in Θ(2n).

The analysis of the list-append applications is similar. The length of the first
input to list-append is the length of the result of the list-powerset application,
so the total length of all the inputs to append is 2n.

Other than the applications of list-map and list-append, the rest of each list-
powerset application requires constant time. So, the running time required for
2n applications is in Θ(2n). The total running time for list-powerset is the sum
of the running times for the list-powerset applications, in Θ(2n); the list-map
applications, in Θ(2n); and the list-append applications, in Θ(2n). Hence, the
total running time is in Θ(2n).

In this case, we know there can be no faster than exponential procedure that
solves the same problem, since the size of the output is exponential in the size
of the input. Since the most work a Turing Machine can do in one step is write
one square, the size of the output provides a lower bound on the running time
of the Turing Machine. The size of the powerset is 2n where n is the size of the
input set. Hence, the fastest possible procedure for this problem has at least
exponential running time.

9Observant readers will note that it is not really necessary to perform this evaluation twice since
we could do it once and reuse the result. Even with this change, though, the running time would still
be in Θ(2n).

150 7.5. Summary

7.4.5 Faster than Exponential Growth
We have already seen an example of a procedure that grows faster than expo-
nentially in the size of the input: the fibo procedure at the beginning of this
chapter! Evaluating an application of fibo involves Θ(φn) recursive applications
where n is the magnitude of the input parameter. The size of a numeric input is
the number of bits needed to express it, so the value n can be as high as 2b − 1
where b is the number of bits. Hence, the running time of the fibo procedure is
in Θ(φ2b

) where b is the size of the input. This is why we are still waiting for (fibo
60) to finish evaluating.

7.4.6 Non-terminating Procedures
All of the procedures so far in the section are algorithms: they may be slow, but
they are guaranteed to eventually finish if one can wait long enough. Some pro-
cedures never terminate. For example,

(define (run-forever) (run-forever))

defines a procedure that never finishes. Its body calls itself, never making any
progress toward a base case. The running time of this procedure is effectively
infinite since it never finishes.

7.5 Summary
Because the speed of computers varies and the exact time required for a particu-
lar application depends on many details, the most important property to under-
stand is how the work required scales with the size of the input. The asymptotic
operators provide a convenient way of understanding the cost involved in eval-
uating a procedure applications.

Procedures that can produce an output only touching a fixed amount have con-
stant running times. Procedures whose running times increase by a fixed amount
when the input size increases by one have linear (in Θ(n)) running times. Proce-
dures whose running time quadruples when the input size doubles have quadratic
(in Θ(n2)) running times. Procedures whose running time doubles when the in-
put size increases by one have exponential (in Θ(2n)) running times. Procedures
with exponential running time can only be evaluated for small inputs.

Asymptotic analysis, however, must be interpreted cautiously. For large enough
inputs, a procedure with running time in Θ(n) is always faster than a procedure
with running time in Θ(n2). But, for an input of a particular size, the Θ(n2)
procedure may be faster. Without knowing the constants that are hidden by the
asymptotic operators, there is no way to accurately predict the actual running
time on a given input.

Chapter 7. Cost 151

Exercise 7.18. Analyze the asymptotic running time of the list-sum procedure
(from Example 5.2):

(define (list-sum p)
(if (null? p)

0
(+ (car p) (list-sum (cdr p)))))

You may assume all of the elements in the list have values below some constant
(but explain why this assumption is useful in your analysis).

Exercise 7.19. Analyze the asymptotic running time of the factorial procedure
(from Example 4.1):

(define (factorial n) (if (= n 0) 1 (∗ n (factorial (− n 1)))))

Be careful to describe the running time in terms of the size (not the magnitude)
of the input.

Exercise 7.20. Consider the intsto problem (from Example 5.8).

a. [?] Analyze the asymptotic running time of this intsto procedure:

(define (revintsto n)
(if (= n 0)

null
(cons n (revintsto (− n 1)))))

(define (intsto n) (list-reverse (revintsto n)))

b. [?] Analyze the asymptotic running time of this instto procedure:

(define (intsto n)
(if (= n 0) null (list-append (intsto (− n 1)) (list n))))

c. Which version is better?

d. [??] Is there an asymptotically faster intsto procedure?

Exercise 7.21. Analyze the running time of the board-replace-peg procedure
(from Exploration 5.2):

(define (row-replace-peg pegs col val)
(if (= col 1) (cons val (cdr pegs))

(cons (car pegs) (row-replace-peg (cdr pegs) (− col 1) val))))
(define (board-replace-peg board row col val)

(if (= row 1) (cons (row-replace-peg (car board) col val) (cdr board))
(cons (car board) (board-replace-peg (cdr board) (− row 1) col val))))

152 7.5. Summary

Exercise 7.22. Analyze the running time of the deep-list-flatten procedure from
Section 5.5:

(define (deep-list-flatten p)
(if (null? p) null

(list-append (if (list? (car p))
(deep-list-flatten (car p))
(list (car p)))

(deep-list-flatten (cdr p)))))

Exercise 7.23. [?] Find and correct at least one error in the Orders of Growth
section of the Wikipedia page on Analysis of Algorithms (http://en.wikipedia.org/
wiki/Analysis of algorithms). This is rated as [?] now (July 2011), since the cur-
rent entry contains many fairly obvious errors. Hopefully it will soon become a
[? ? ?] challenge, and perhaps, eventually will become impossible!

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms

