

146 7.4. Growth Rates

Example 7.7: Reverse

Consider the list-reverse procedure defined in Section 5.4.2:

(define (list-reverse p)
(if (null? p) null (list-append (list-reverse (cdr p)) (list (car p)))))

To determine the running time of list-reverse, we need to know how many recur-
sive calls there are and how much work is involved in each recursive call. Each
recursive application passes in (cdr p) as the input, so reduces the length of the
input list by one. Hence, applying list-reverse to a input list with n elements in-
volves n recursive calls.

The work for each recursive application, excluding the recursive call itself, is ap-
plying list-append. The first input to list-append is the output of the recursive
call. As we argued in Example 7.4, the running time of list-append is in Θ(np)
where np is the number of elements in its first input. So, to determine the run-
ning time we need to know the length of the first input list to list-append. For the
first call, (cdr p) is the parameter, with length n− 1; for the second call, there will
be n− 2 elements; and so forth, until the final call where (cdr p) has 0 elements.
The total number of elements in all of these calls is:

(n− 1) + (n− 2) + . . . + 1 + 0.

The average number of elements in each call is approximately n
2 . Within the

asymptotic operators the constant factor of 1
2 does not matter, so the average

running time for each recursive application is in Θ(n).

There are n recursive applications, so the total running time of list-reverse is n
times the average running time of each recursive application:

n ·Θ(n) = Θ(n2).

Thus, the running time is quadratic in the size of the input list.

Example 7.8: Multiplication

Consider the problem of multiplying two numbers. The elementary school long
multiplication algorithm works by multiplying each digit in b by each digit in a,
aligning the intermediate results in the right places, and summing the results:

an−1 · · · a1 a0
× bn−1 · · · b1 b0

an−1b0 · · · a1b0 a0b0
an−1b1 · · · a1b1 a0b1

+ an−1bn−1 · · · a1bn−1 a0bn−1

r2n−1 r2n−2 · · · · · · r3 r2 r1 r0

If both input numbers have n digits, there are n2 digit multiplications, each of
which can be done in constant time. The intermediate results will be n rows,
each containing n digits. So, the total number of digits to add is n2: 1 digit in the
ones place, 2 digits in the tens place, . . ., n digits in the 10n−1s place, . . ., 2 digits
in the 102n−3s place, and 1 digit in the 102n−2s place. Each digit addition requires

Chapter 7. Cost 147

constant work, so the total work for all the digit additions is in Θ(n2). Adding
the work for both the digit multiplications and the digit additions, the total run-
ning time for the elementary school multiplication algorithm is quadratic in the
number of input digits, Θ(n2) where n is the number if digits in the inputs.

This is not the fastest known algorithm for multiplying two numbers, although it
was the best algorithm known until 1960. In 1960, Anatolii Karatsuba discovers
a multiplication algorithm with running time in Θ(nlog2 3). Since log2 3 < 1.585
this is an improvement over the Θ(n2) elementary school algorithm. In 2007,
Martin Fürer discovered an even faster algorithm for multiplication.6 It is not
yet known if this is the fastest possible multiplication algorithm, or if faster ones
exist.

Exercise 7.15. [?] Analyze the running time of the elementary school long divi-
sion algorithm.

Exercise 7.16. [?] Define a Scheme procedure that multiplies two multi-digit
numbers (without using the built-in ∗ procedure except to multiply single-digit
numbers). Strive for your procedure to have running time in Θ(n) where n is the
total number of digits in the input numbers.

Exercise 7.17. [? ? ??] Devise an asymptotically faster general multiplication
algorithm than Fürer’s, or prove that no faster algorithm exists.

7.4.4 Exponential Growth
If the running time of a procedure scales as a power of the size of the input,
the procedure’s running time grows exponentially. When the size of the input
increases by one, the running time is multiplied by some constant factor. The
growth rate of a function whose output is multiplied by w when the input size,
n, increases by one is wn. Exponential growth is very fast—it is not feasible to
evaluate applications of an exponential time procedure on large inputs.

For a surprisingly large number of interesting problems, the best known algo-
rithm has exponential running time. Examples of problems like this include
finding the best route between two locations on a map (the problem mentioned
at the beginning of Chapter 4), the pegboard puzzle (Exploration 5.2, solving
generalized versions of most other games such as Suduko and Minesweeper,
and finding the factors of a number. Whether or not it is possible to design
faster algorithms that solve these problems is the most important open prob-
lem in computer science.

Example 7.9: Factoring

A simple way to find a factor of a given input number is to exhaustively try all
possible numbers below the input number to find the first one that divides the
number evenly. The find-factor procedure takes one number as input and out-
puts the lowest factor of that number (other than 1):

6Martin Fürer, Faster Integer Multiplication, ACM Symposium on Theory of Computing, 2007.

148 7.4. Growth Rates

(define (find-factor n)
(define (find-factor-helper v)

(if (= (modulo n v) 0) v (find-factor-helper (+ 1 v))))
(find-factor-helper 2))

The find-factor-helper procedure takes two inputs, the number to factor and the
current guess. Since all numbers are divisible by themselves, the modulo test
will eventually be true for any positive input number, so the maximum number
of recursive calls is n, the magnitude of the input to find-factor . The magnitude
of n is exponential in its size, so the number of recursive calls is in Θ(2b) where
b is the number of bits in the input. This means even if the amount of work re-
quired for each recursive call were constant, the running time of the find-factor
procedure is still exponential in the size of its input.

The actual work for each recursive call is not constant, though, since it involves
an application of modulo. The modulo built-in procedure takes two inputs and
outputs the remainder when the first input is divided by the second input. Hence,
it output is 0 if n is divisible by v. Computing a remainder, in the worst case, at
least involves examining every bit in the input number, so scales at least linearly
in the size of its input7. This means the running time of find-factor is in Ω(2b):
it grows at least as fast as 2b.

There are lots of ways we could produce a faster procedure for finding factors:
stopping once the square root of the input number is reached since we know
there is no need to check the rest of the numbers, skipping even numbers after 2
since if a number is divisible by any even number it is also divisible by 2, or using
advanced sieve methods. This techniques can improve the running time by con-
stant factors, but there is no known factoring algorithm that runs in faster than
exponential time. The security of the widely used RSA encryption algorithm de-
pends on factoring being hard; if someone finds a faster than exponential time
factoring algorithm it would put the codes used to secure Internet commerce at
risk.8

Example 7.10: Power Set

The power set of a set S is the set of all subsets of S. For example, the power setpower set

of {1, 2, 3} is {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The number of elements in the power set of S is 2|S| (where |S| is the number of
elements in the set S).

Here is a procedure that takes a list as input, and produces as output the power
set of the elements of the list:

(define (list-powerset s)
(if (null? s) (list null)

(list-append (list-map (lambda (t) (cons (car s) t))
(list-powerset (cdr s)))

(list-powerset (cdr s)))))

The list-powerset procedure produces a List of Lists. Hence, for the base case,

7In fact, it computing the remainder requires performing division, which is quadratic in the size
of the input.

8The movie Sneakers is a fictional account of what would happen if someone finds a faster than
exponential time factoring algorithm.

Chapter 7. Cost 149

instead of just producing null, it produces a list containing a single element,
null. In the recursive case, we can produce the power set by appending the list
of all the subsets that include the first element, with the list of all the subsets that
do not include the first element. For example, the powerset of {1, 2, 3} is found
by finding the powerset of {2, 3}, which is {{}, {2}, {3}, {2, 3}}, and taking the
union of that set with the set of all elements in that set unioned with {1}.

An application of list-powerset involves applying list-append, and two recursive
applications of (list-powerset (cdr s)). Increasing the size of the input list by one,
doubles the total number of applications of list-powerset since we need to eval-
uate (list-powerset (cdr s)) twice. The number of applications of list-powerset is
2n where n is the length of the input list.9

The body of list-powerset is an if expression. The predicate applies the constant-
time procedure, null?. The consequent expression, (list null) is also constant
time. The alternate expression is an application of list-append. From Exam-
ple 7.4, we know the running time of list-append is Θ(np) where np is the num-
ber of elements in its first input. The first input is the result of applying list-map
to a procedure and the List produced by (list-powerset (cdr s)). The length of
the list output by list-map is the same as the length of its input, so we need to
determine the length of (list-powerset (cdr s)).

We use ns to represent the number of elements in s. The length of the input list
to map is the number of elements in the power set of a size ns − 1 set: 2ns−1. But,
for each application, the value of ns is different. Since we are trying to determine
the total running time, we can do this by thinking about the total length of all the
input lists to list-map over all of the list-powerset . In the input is a list of length
n, the total list length is 2n−1 + 2n−2 + ... + 21 + 20, which is equal to 2n − 1. So,
the running time for all the list-map applications is in Θ(2n).

The analysis of the list-append applications is similar. The length of the first
input to list-append is the length of the result of the list-powerset application,
so the total length of all the inputs to append is 2n.

Other than the applications of list-map and list-append, the rest of each list-
powerset application requires constant time. So, the running time required for
2n applications is in Θ(2n). The total running time for list-powerset is the sum
of the running times for the list-powerset applications, in Θ(2n); the list-map
applications, in Θ(2n); and the list-append applications, in Θ(2n). Hence, the
total running time is in Θ(2n).

In this case, we know there can be no faster than exponential procedure that
solves the same problem, since the size of the output is exponential in the size
of the input. Since the most work a Turing Machine can do in one step is write
one square, the size of the output provides a lower bound on the running time
of the Turing Machine. The size of the powerset is 2n where n is the size of the
input set. Hence, the fastest possible procedure for this problem has at least
exponential running time.

9Observant readers will note that it is not really necessary to perform this evaluation twice since
we could do it once and reuse the result. Even with this change, though, the running time would still
be in Θ(2n).

150 7.5. Summary

7.4.5 Faster than Exponential Growth
We have already seen an example of a procedure that grows faster than expo-
nentially in the size of the input: the fibo procedure at the beginning of this
chapter! Evaluating an application of fibo involves Θ(φn) recursive applications
where n is the magnitude of the input parameter. The size of a numeric input is
the number of bits needed to express it, so the value n can be as high as 2b − 1
where b is the number of bits. Hence, the running time of the fibo procedure is
in Θ(φ2b

) where b is the size of the input. This is why we are still waiting for (fibo
60) to finish evaluating.

7.4.6 Non-terminating Procedures
All of the procedures so far in the section are algorithms: they may be slow, but
they are guaranteed to eventually finish if one can wait long enough. Some pro-
cedures never terminate. For example,

(define (run-forever) (run-forever))

defines a procedure that never finishes. Its body calls itself, never making any
progress toward a base case. The running time of this procedure is effectively
infinite since it never finishes.

7.5 Summary
Because the speed of computers varies and the exact time required for a particu-
lar application depends on many details, the most important property to under-
stand is how the work required scales with the size of the input. The asymptotic
operators provide a convenient way of understanding the cost involved in eval-
uating a procedure applications.

Procedures that can produce an output only touching a fixed amount have con-
stant running times. Procedures whose running times increase by a fixed amount
when the input size increases by one have linear (in Θ(n)) running times. Proce-
dures whose running time quadruples when the input size doubles have quadratic
(in Θ(n2)) running times. Procedures whose running time doubles when the in-
put size increases by one have exponential (in Θ(2n)) running times. Procedures
with exponential running time can only be evaluated for small inputs.

Asymptotic analysis, however, must be interpreted cautiously. For large enough
inputs, a procedure with running time in Θ(n) is always faster than a procedure
with running time in Θ(n2). But, for an input of a particular size, the Θ(n2)
procedure may be faster. Without knowing the constants that are hidden by the
asymptotic operators, there is no way to accurately predict the actual running
time on a given input.

Chapter 7. Cost 151

Exercise 7.18. Analyze the asymptotic running time of the list-sum procedure
(from Example 5.2):

(define (list-sum p)
(if (null? p)

0
(+ (car p) (list-sum (cdr p)))))

You may assume all of the elements in the list have values below some constant
(but explain why this assumption is useful in your analysis).

Exercise 7.19. Analyze the asymptotic running time of the factorial procedure
(from Example 4.1):

(define (factorial n) (if (= n 0) 1 (∗ n (factorial (− n 1)))))

Be careful to describe the running time in terms of the size (not the magnitude)
of the input.

Exercise 7.20. Consider the intsto problem (from Example 5.8).

a. [?] Analyze the asymptotic running time of this intsto procedure:

(define (revintsto n)
(if (= n 0)

null
(cons n (revintsto (− n 1)))))

(define (intsto n) (list-reverse (revintsto n)))

b. [?] Analyze the asymptotic running time of this instto procedure:

(define (intsto n)
(if (= n 0) null (list-append (intsto (− n 1)) (list n))))

c. Which version is better?

d. [??] Is there an asymptotically faster intsto procedure?

Exercise 7.21. Analyze the running time of the board-replace-peg procedure
(from Exploration 5.2):

(define (row-replace-peg pegs col val)
(if (= col 1) (cons val (cdr pegs))

(cons (car pegs) (row-replace-peg (cdr pegs) (− col 1) val))))
(define (board-replace-peg board row col val)

(if (= row 1) (cons (row-replace-peg (car board) col val) (cdr board))
(cons (car board) (board-replace-peg (cdr board) (− row 1) col val))))

152 7.5. Summary

Exercise 7.22. Analyze the running time of the deep-list-flatten procedure from
Section 5.5:

(define (deep-list-flatten p)
(if (null? p) null

(list-append (if (list? (car p))
(deep-list-flatten (car p))
(list (car p)))

(deep-list-flatten (cdr p)))))

Exercise 7.23. [?] Find and correct at least one error in the Orders of Growth
section of the Wikipedia page on Analysis of Algorithms (http://en.wikipedia.org/
wiki/Analysis of algorithms). This is rated as [?] now (July 2011), since the cur-
rent entry contains many fairly obvious errors. Hopefully it will soon become a
[? ? ?] challenge, and perhaps, eventually will become impossible!

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms

